Solid-state impedance spectroscopy(SS-IS)was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary m...Solid-state impedance spectroscopy(SS-IS)was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary mixed glass former(MGF)system 35Na_(2)O–10V_(2)O_(5)–(55-x)P_(2)O_(5)–xNb_(2)O_(5)(x=0–40,mol%).The dielectric parameters,including the dielectric strength and dielectric loss,are determined from the frequency and temperature-dependent complex permittivity data,revealing a significant dependence on the Nb2O5 content.The transition from a predominantly phosphate glass network(x<10,region I)to a mixed niobate–phosphate glass net-work(10≤x≤20,region II)leads to an increase in the dielectric parameters,which correlates with the observed trend in the direct-cur-rent(DC)conductivity.In the predominantly niobate network(x≥25,region III),the highly polarizable nature of Nb5+ions leads to a fur-ther increase in the dielectric permittivity and dielectric strength.This is particularly evident in Nb-40 glass-ceramic,which contains Na_(13)Nb_(35)O_(94) crystalline phase with a tungsten bronze structure and exhibits the highest dielectric permittivity of 61.81 and the lowest loss factor of 0.032 at 303 K and 10 kHz.The relaxation studies,analyzed through modulus formalism and complex impedance data,show that DC conductivity and relaxation processes are governed by the same mechanism,attributed to ionic conductivity.In contrast to glasses with a single peak in frequency dependence of imaginary part of electrical modulus,M″(ω),Nb-40 glass-ceramic exhibits two distinct contributions with similar relaxation times.The high-frequency peak indicates bulk ionic conductivity,while the additional low-fre-quency peak is associated with the grain boundary effect,confirmed by the electrical equivalent circuit(EEC)modelling.The scaling characteristics of permittivity and conductivity spectra,along with the electrical modulus,validate time-temperature superposition and demonstrate a strong correlation with composition and modification of the glass structure upon Nb_(2)O_(5) incorporation.展开更多
The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index met...The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.展开更多
Multi-scales relaxation processes of short fiber of a nematic liquid crystalline copolymer(LCP)in polycarbonate matrix were investigated.First,the structure relaxation of LCP was studied by rheology.The relaxation spe...Multi-scales relaxation processes of short fiber of a nematic liquid crystalline copolymer(LCP)in polycarbonate matrix were investigated.First,the structure relaxation of LCP was studied by rheology.The relaxation spectrum of the nematic liquid crystalline copolymer at 295℃was calculated from the combined dynamic modulus.There are three kinds of relaxation mechanisms for nematic liquid crystalline copotymer:the relaxation of chain orientation,the relaxation of deformed polydomains and the coalescence of pol...展开更多
The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from...The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from campaign stations located around the Longmenshan fault, and the derived decay time constant is 12 days. The evolution of the post-seismic vertical deformation is obtained from precise leveling data measured near the surface rupture. The results demonstrate that the hanging wall is uplifting and the foot wall is subsi- ding. The amplitude of the post-seismic deformation is lower than that of the co-seismic deformation. The re- gion with the largest post-seismic displacement is located on the leveling route between Maoxian and Beichuan on the hanging wall.展开更多
Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simul...Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.展开更多
Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our pre...Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our previous work [Acta Phys. Sin. 61 174301 (2012)], an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed. In this paper, we develop the model to decouple the V-V coupled energy to each vibrationaltranslational deexcitation path, and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures. We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes, and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak. The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures. The simulation validates the proposed decoupling model.展开更多
The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium...The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magne- tometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f.THz-1/2 is achieved with our SERF magnetometer.展开更多
In this paper,we proposed a novel method for low-field nuclear magnetic resonance(NMR)inversion based on low-rank and sparsity restraint(LRSR)of relaxation spectra,with which high quality construction is made possible...In this paper,we proposed a novel method for low-field nuclear magnetic resonance(NMR)inversion based on low-rank and sparsity restraint(LRSR)of relaxation spectra,with which high quality construction is made possible for one-and two-dimensional low-field and low signal to noise ratio NMR data.In this method,the low-rank and sparsity restraints are introduced into the objective function instead of the smoothing term.The low-rank features in relaxation spectra are extracted to ensure the local characteristics and morphology of spectra.The sparsity and residual term are contributed to the resolution and precision of spectra,with the elimination of the redundant relaxation components.Optimization process of the objective function is designed with alternating direction method of multiples,in which the objective function is decomposed into three subproblems to be independently solved.The optimum solution can be obtained by alternating iteration and updating process.At first,numerical simulations are conducted on synthetic echo data with different signal-to-noise ratios,to optimize the desirable regularization parameters and verify the feasibility and effectiveness of proposed method.Then,NMR experiments on solutions and artificial sandstone samples are conducted and analyzed,which validates the robustness and reliability of the proposed method.The results from simulations and experiments have demonstrated that the suggested method has unique advantages for improving the resolution of relaxation spectra and enhancing the ability of fluid quantitative identification.展开更多
The temperature spectra of internal friction of polyetheretherketone (PEEK) are investigated from 130K to 250K with a multi-function torsion pendulum in the frequency range of 0.1 Hz to 5 Hz. A relaxation process, γ ...The temperature spectra of internal friction of polyetheretherketone (PEEK) are investigated from 130K to 250K with a multi-function torsion pendulum in the frequency range of 0.1 Hz to 5 Hz. A relaxation process, γ relaxation, appears in the temperature range of the measurement. Its relaxation time distribution in terms of a Gaussian distribution, and the relation between molecular motion mechanism and the distribution characteristic are discussed. The element process of γ relaxation is found to be a disordering one.展开更多
Relaxation behavior of the Curie temperature(TC)of two amorphous alloys Fe40Ni40P14B6 and(Fe0.1Co0.55Ni0.35)78Si8B14 was investigated under high pressure up to 20kbar.Experimental results show that Tc relaxation proce...Relaxation behavior of the Curie temperature(TC)of two amorphous alloys Fe40Ni40P14B6 and(Fe0.1Co0.55Ni0.35)78Si8B14 was investigated under high pressure up to 20kbar.Experimental results show that Tc relaxation process was restrained by high pressure.On the other hand,alternative treating sample at different pressures may enhance this process.Based on the expansion of local pressed region in an amorphous structure,a mechanism of relaxation under high pressure was suggested for explaining the above phenomena.展开更多
A study of the behavior of water during its movements under mechanical shaking is presented. It is shown that rhythmic shaking of water with 1Hz causes the same rhythmic effects in a periodic [H+] growth and products ...A study of the behavior of water during its movements under mechanical shaking is presented. It is shown that rhythmic shaking of water with 1Hz causes the same rhythmic effects in a periodic [H+] growth and products with higher positive potential. This paper discusses the role of water motion in nature.展开更多
^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadru...^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadrupolar interaction,the relaxation behavior of ^(23)Na is physically and mathematically more complex than that of a typical spin-1/2 isotope.In this review,we overview the semi-classical Redfield theory for deriving the formulations of ^(23)Na relaxation.We show that the relaxation behaviors of ^(23)Na can be quantitatively described by constructing the spectral density functions based on the second-order perturbation theory.In addition,we summarize the applications of ^(23)Na relaxometry in different research fields,including biomedicine,sodium ion batteries,and quantum information processing.Because sodium is an essential element in our body,food and industrial materials,the research on sodium by ^(23)Na NMR emerges as important future directions.The theoretical and practical understandings on ^(23)Na relaxation are the step stones for mastering advanced ^(23)Na NMR techniques.展开更多
文摘Solid-state impedance spectroscopy(SS-IS)was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary mixed glass former(MGF)system 35Na_(2)O–10V_(2)O_(5)–(55-x)P_(2)O_(5)–xNb_(2)O_(5)(x=0–40,mol%).The dielectric parameters,including the dielectric strength and dielectric loss,are determined from the frequency and temperature-dependent complex permittivity data,revealing a significant dependence on the Nb2O5 content.The transition from a predominantly phosphate glass network(x<10,region I)to a mixed niobate–phosphate glass net-work(10≤x≤20,region II)leads to an increase in the dielectric parameters,which correlates with the observed trend in the direct-cur-rent(DC)conductivity.In the predominantly niobate network(x≥25,region III),the highly polarizable nature of Nb5+ions leads to a fur-ther increase in the dielectric permittivity and dielectric strength.This is particularly evident in Nb-40 glass-ceramic,which contains Na_(13)Nb_(35)O_(94) crystalline phase with a tungsten bronze structure and exhibits the highest dielectric permittivity of 61.81 and the lowest loss factor of 0.032 at 303 K and 10 kHz.The relaxation studies,analyzed through modulus formalism and complex impedance data,show that DC conductivity and relaxation processes are governed by the same mechanism,attributed to ionic conductivity.In contrast to glasses with a single peak in frequency dependence of imaginary part of electrical modulus,M″(ω),Nb-40 glass-ceramic exhibits two distinct contributions with similar relaxation times.The high-frequency peak indicates bulk ionic conductivity,while the additional low-fre-quency peak is associated with the grain boundary effect,confirmed by the electrical equivalent circuit(EEC)modelling.The scaling characteristics of permittivity and conductivity spectra,along with the electrical modulus,validate time-temperature superposition and demonstrate a strong correlation with composition and modification of the glass structure upon Nb_(2)O_(5) incorporation.
基金Projects (50831003, 50571037) supported by the National Natural Science Foundation of China
文摘The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.
基金This work was financially supported by the National Natural Science Foundation of China(Nos. 20174024,20204007 and 50290090).
文摘Multi-scales relaxation processes of short fiber of a nematic liquid crystalline copolymer(LCP)in polycarbonate matrix were investigated.First,the structure relaxation of LCP was studied by rheology.The relaxation spectrum of the nematic liquid crystalline copolymer at 295℃was calculated from the combined dynamic modulus.There are three kinds of relaxation mechanisms for nematic liquid crystalline copotymer:the relaxation of chain orientation,the relaxation of deformed polydomains and the coalescence of pol...
基金supported by the Special Earthquake Research Project Granted by the China Earthquake Administration(201208006)the National Natural Science Foundation of China(41174083,40974062)
文摘The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from campaign stations located around the Longmenshan fault, and the derived decay time constant is 12 days. The evolution of the post-seismic vertical deformation is obtained from precise leveling data measured near the surface rupture. The results demonstrate that the hanging wall is uplifting and the foot wall is subsi- ding. The amplitude of the post-seismic deformation is lower than that of the co-seismic deformation. The re- gion with the largest post-seismic displacement is located on the leveling route between Maoxian and Beichuan on the hanging wall.
基金supported by College of William and Mary,Virginia Institute of Marine Science for the study environment
文摘Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60971009 and 61001011)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090142110019)+1 种基金the Natural Science Foundation of Hubei Province, China (Grant No. 2010CDB02701)the Fundamental Research Funds for the Central Universities, China (Grant No. 2012QN083)
文摘Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our previous work [Acta Phys. Sin. 61 174301 (2012)], an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed. In this paper, we develop the model to decouple the V-V coupled energy to each vibrationaltranslational deexcitation path, and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures. We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes, and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak. The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures. The simulation validates the proposed decoupling model.
基金supported by the National Natural Science Foundation of China(Grant No.61227902)
文摘The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magne- tometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f.THz-1/2 is achieved with our SERF magnetometer.
基金supported by “National Natural Science Foundation of China (Grant No. 42204106)”“China Postdoctoral Science Foundation (Grant No. 2021M700172)”+1 种基金“The Strategic Cooperation Technology Projects of CNPC and CUP (Grant No. ZLZX2020-03)”“Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJD430002)”
文摘In this paper,we proposed a novel method for low-field nuclear magnetic resonance(NMR)inversion based on low-rank and sparsity restraint(LRSR)of relaxation spectra,with which high quality construction is made possible for one-and two-dimensional low-field and low signal to noise ratio NMR data.In this method,the low-rank and sparsity restraints are introduced into the objective function instead of the smoothing term.The low-rank features in relaxation spectra are extracted to ensure the local characteristics and morphology of spectra.The sparsity and residual term are contributed to the resolution and precision of spectra,with the elimination of the redundant relaxation components.Optimization process of the objective function is designed with alternating direction method of multiples,in which the objective function is decomposed into three subproblems to be independently solved.The optimum solution can be obtained by alternating iteration and updating process.At first,numerical simulations are conducted on synthetic echo data with different signal-to-noise ratios,to optimize the desirable regularization parameters and verify the feasibility and effectiveness of proposed method.Then,NMR experiments on solutions and artificial sandstone samples are conducted and analyzed,which validates the robustness and reliability of the proposed method.The results from simulations and experiments have demonstrated that the suggested method has unique advantages for improving the resolution of relaxation spectra and enhancing the ability of fluid quantitative identification.
基金Project supported by the National Natural Science Foundation of China
文摘The temperature spectra of internal friction of polyetheretherketone (PEEK) are investigated from 130K to 250K with a multi-function torsion pendulum in the frequency range of 0.1 Hz to 5 Hz. A relaxation process, γ relaxation, appears in the temperature range of the measurement. Its relaxation time distribution in terms of a Gaussian distribution, and the relation between molecular motion mechanism and the distribution characteristic are discussed. The element process of γ relaxation is found to be a disordering one.
文摘Relaxation behavior of the Curie temperature(TC)of two amorphous alloys Fe40Ni40P14B6 and(Fe0.1Co0.55Ni0.35)78Si8B14 was investigated under high pressure up to 20kbar.Experimental results show that Tc relaxation process was restrained by high pressure.On the other hand,alternative treating sample at different pressures may enhance this process.Based on the expansion of local pressed region in an amorphous structure,a mechanism of relaxation under high pressure was suggested for explaining the above phenomena.
文摘A study of the behavior of water during its movements under mechanical shaking is presented. It is shown that rhythmic shaking of water with 1Hz causes the same rhythmic effects in a periodic [H+] growth and products with higher positive potential. This paper discusses the role of water motion in nature.
基金National Natural Science Foundation of China 22275159 and 22072133.Leading Innovation and Entrepreneurship Team of Zhejiang Province 2020R01003.
文摘^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadrupolar interaction,the relaxation behavior of ^(23)Na is physically and mathematically more complex than that of a typical spin-1/2 isotope.In this review,we overview the semi-classical Redfield theory for deriving the formulations of ^(23)Na relaxation.We show that the relaxation behaviors of ^(23)Na can be quantitatively described by constructing the spectral density functions based on the second-order perturbation theory.In addition,we summarize the applications of ^(23)Na relaxometry in different research fields,including biomedicine,sodium ion batteries,and quantum information processing.Because sodium is an essential element in our body,food and industrial materials,the research on sodium by ^(23)Na NMR emerges as important future directions.The theoretical and practical understandings on ^(23)Na relaxation are the step stones for mastering advanced ^(23)Na NMR techniques.