AIM: To determine whether the number of non-rejoining G2-chromatid breaks can predict the radiosensitivity of human cell lines. METHODS: Cell lines of human ovary carcinoma cells (HO8910), human hepatoma cells (H...AIM: To determine whether the number of non-rejoining G2-chromatid breaks can predict the radiosensitivity of human cell lines. METHODS: Cell lines of human ovary carcinoma cells (HO8910), human hepatoma cells (HepG2) and liver cells (L02) were irradiated with a range of doses and assessed both of cell survival and non-rejoining G2-chromatid breaks at 24 h after irradiation. Cell survival was documented by a colony assay. Non-rejoining G2-chromatid breaks were measured by counting the number of non-rejoining G2 chromatid breaks at 24 h after irradiation, detected by the prematurely chromosome condensed (PCC) technique. RESULTS: A linear-quadratic survival curve was observed in three cell lines, and HepG2 was the most sensitive to γ-radiaUon. A dose-dependent linear increase was observed in radiation-induced non-rejoining G2- PCC breaks measured at 24 h after irradiation in all cell lines, and HepG2 was the most susceptible to induction of non-rejoining G2-PCC breaks. A close correlation was found between the clonogenic radiosensitivity and the radiation-induced non-rejoining G2-PCC breaks (r=0.923). Furthermore, survival-aberration correlations for two or more than two doses lever were also significant. CONCLUSION: The number of non-rejoining G2 PCC breaks holds considerable promise for predicting the radiosensitMty of normal and tumor cells when two or more than two doses lever is tested.展开更多
基金Supported by the Key Project of National Natural Science Foundation of China, No. 10335050the Key Project of Ministry of Science and Technology of China, No. 2003CCB00200
文摘AIM: To determine whether the number of non-rejoining G2-chromatid breaks can predict the radiosensitivity of human cell lines. METHODS: Cell lines of human ovary carcinoma cells (HO8910), human hepatoma cells (HepG2) and liver cells (L02) were irradiated with a range of doses and assessed both of cell survival and non-rejoining G2-chromatid breaks at 24 h after irradiation. Cell survival was documented by a colony assay. Non-rejoining G2-chromatid breaks were measured by counting the number of non-rejoining G2 chromatid breaks at 24 h after irradiation, detected by the prematurely chromosome condensed (PCC) technique. RESULTS: A linear-quadratic survival curve was observed in three cell lines, and HepG2 was the most sensitive to γ-radiaUon. A dose-dependent linear increase was observed in radiation-induced non-rejoining G2- PCC breaks measured at 24 h after irradiation in all cell lines, and HepG2 was the most susceptible to induction of non-rejoining G2-PCC breaks. A close correlation was found between the clonogenic radiosensitivity and the radiation-induced non-rejoining G2-PCC breaks (r=0.923). Furthermore, survival-aberration correlations for two or more than two doses lever were also significant. CONCLUSION: The number of non-rejoining G2 PCC breaks holds considerable promise for predicting the radiosensitMty of normal and tumor cells when two or more than two doses lever is tested.