This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows t...This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
The theory of three-dimensional deformation is used.Based on rigid plastic assumption, the theory of stick friction and the sheet crown curve at the entry and the exit are used. The mathematical analytical formula of ...The theory of three-dimensional deformation is used.Based on rigid plastic assumption, the theory of stick friction and the sheet crown curve at the entry and the exit are used. The mathematical analytical formula of the rolling force in lateral distribution is deriven.展开更多
Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into batter...Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.展开更多
The level ice thickness and compressive strength at the four measuring stations in the Liaodong Bay are inferred according to the hydrologic and meteorologic data there, then the yearly extreme ice forces on a solitar...The level ice thickness and compressive strength at the four measuring stations in the Liaodong Bay are inferred according to the hydrologic and meteorologic data there, then the yearly extreme ice forces on a solitary pile are calculated by the use of appropriate formula of ice forces and its probabilistic distribution is determined. Generally, the yearly extreme ice force follows Weibull distribution best as compared with Normal, Lognormal, and Extreme Value I distribution. On the other hand, the short-term distribution of ice forces on a solitary pile is obtained from the model experiment data analysis: It does not refuse Extreme Value I distribution.展开更多
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure...Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.展开更多
Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to th...Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.展开更多
In our relevant paper[Zhao S X(2021)Chin.Phys.B 30055201],a delta distribution of negative ions is given by fluid simulation and preliminarily explained by decomposed anions transport equation.In the present work,firs...In our relevant paper[Zhao S X(2021)Chin.Phys.B 30055201],a delta distribution of negative ions is given by fluid simulation and preliminarily explained by decomposed anions transport equation.In the present work,first,the intrinsic connection between the electropositive plasma transport equation and spring oscillator dynamic equation is established.Inspired by this similarity,reformed“spring oscillator”equation with dispersing instead of restoring force that gives quasi-delta solution is devised according to the math embodied in the anion equation,which is of potential significance to the disciplines of atomic physics and astronomy as well.For solving the“diffusion confusion”the physics that determines the delta profile within the continuity equation is explored on the basis that recombination loss source term plays the role of drift flux,which is applicable for fluid model of low temperature plasma,but not the ordinary fluid dynamics.Besides,the math and physics revealed in this work predict that the ratio of recombination or attachment(for electrons)frequency versus the species diffusion coefficient is a very important parameter in determining the delta distribution,as it acts as the acceleration of object,according to the reformed oscillator equation.With this theory,the analogous delta profile of electrons density in the famous drift and ambi-polar diffusion heating mechanism of electronegative capacitively coupled plasma is interpreted.展开更多
Electromagnetic V-shape bending of small size sheet blank is investigated numerically and experimentally. Three-dimensional electromagnetic field models are established to calculate the magnetic force distribution on ...Electromagnetic V-shape bending of small size sheet blank is investigated numerically and experimentally. Three-dimensional electromagnetic field models are established to calculate the magnetic force distribution on the sheet by software ANSYS / EMAG. Series of electromagnetic V-shape bending forming experiments are presented,in which small size uniform pressure coil and big size round flat spiral coil are used. The results show that small size uniform pressure coil is not suitable for electromagnetic forming of small size flat sheet,and the coil is susceptible to failure such as bulging,ablation and cracking. When the plane dimension of round flat spiral coil is bigger than sheet blank sizes,the induced current crowding effect will be resulted which seriously influence the magnetic force distribution on the sheet. In this case,magnetic force distribution can be adjusted through the change of the relative position between coil and sheet,the desired deformation can be obtained finally. Therefore,big size round flat spiral coil can be well applied to electromagnetic V-shape bending forming of small size flat sheet.展开更多
Overconstrained mechanism has the advantages of large bearing capacity and high motion reliability,but its force analysis is complex and difficult because the mechanism system contains overconstraints.Considering the ...Overconstrained mechanism has the advantages of large bearing capacity and high motion reliability,but its force analysis is complex and difficult because the mechanism system contains overconstraints.Considering the limb axial deformation,taking typical 2SS+P and 7-SS passive overconstrained mechanisms,2SPS+P and 7-SPS active overconstrained mechanisms,and 2SPS+P and 7-SPS passive-input overconstrained mechanisms as examples,a new force analysis method based on the idea of equivalent stiffness is proposed.The equivalent stiffness matrix of passive overconstrained mechanism is derived by combining the force balance and deformation compatibility equations with consideration of axial elastic limb deformations.The relationship between the constraint wrench magnitudes and the external force,limb stiffness is established.The equivalent stiffness matrix of active overconstrained mechanism is derived by combining the force balance and displacement compatibility equations.Here,the relationship between the magnitudes of the actuated wrenches and the external force,limb stiffness is investigated.Combining with the equivalent stiffness of the passive overconstrained mechanism,an analytical relationship between the actuated forces of passive-input overconstrained mechanism and the output displacement,limb stiffness is explored.Finally,adaptability of the equivalent stiffness to overconstrained mechanisms is discussed,and the effect of the limb stiffness on overconstrained mechanisms force distribution is revealed.The research results provide a theoretical reference for the design,research and practical application of overconstrained mechanism.展开更多
If the initial fields are not in geostrophic balance, the adjustment and evolution will occur in the stratified fluid. and the frontogenesis will occur under suitable conditions. The evolution is studied here with a n...If the initial fields are not in geostrophic balance, the adjustment and evolution will occur in the stratified fluid. and the frontogenesis will occur under suitable conditions. The evolution is studied here with a nonhydrostatic fully compressible meso-scale model (Advanced Regional Prediction System, ARPS). Four cases are designed and compared: (i) control experiment: (ii) with different initial temperature gradient; (iii) with vapor distribution; (iv) with orographic forcing. The results show that: (1) there is an inertial oscillation in the evolution of the imbalanced flow with the frequency of the local Coriolis f, and with its amplitude decreasing with time. The stationary balanced state can only be approached as it cannot be reached in the limit duration of time. The energy conversion ratio varies in the range of [0, 1; 3]; (2) the stronger initial temperature gradient can make the final energy conversion ratio higher. and vice versa; (3) suitable vapor distribution is favorable for the frontogenesis. It will bring forward the time of the frontogenesis, strengthen the intensity of the cold front, and influence the final energy conversion ratio; (4) the orographic forcing has an evidently strengthening effect on the frontogenesis. The strengthening effect on the frontogenesis and the influence on the final energy conversion ratio depend on the relative location of the mountain to the cold front.展开更多
Gravity is considered one of the most mysterious of the four fundamental forces, a well-studied but poorly understood phenomenon in science. Newtonian physics and General Relativity have studied it from outside. Based...Gravity is considered one of the most mysterious of the four fundamental forces, a well-studied but poorly understood phenomenon in science. Newtonian physics and General Relativity have studied it from outside. Based on fundamental forces the Grand Unified Theory (GUT) and the Standard Model (SM) of Particle Physics study from the inside. GUT and SM explain three fundamental forces that govern the universe: electromagnetism, the strong force, and the weak force. The fourth fundamental force hopes that must be gravity, which the SM cannot adequately explain. The research aims to explain fundamental forces and their interactions based on the hysteresis law. The hysteresis law studies the fundamental forces from both inside and outside, so, I hope it can explain the rules and principles of the universe from the microworld to the macroscopic world. The united force of the three fundamental forces in high energy singularity (vertical asymptote) of the hysteresis becomes the weakest like weak interaction and continuously like strong force but has an infinite range like electromagnetic interaction. In this sense, it may be called gravity. Unfortunately, gravity is not an individual force;it is the positive singularity or high energy asymptotic sum of three fundamental forces emerging from the depth of the hysteresis of the subatomic particles.展开更多
In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on comp...In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on composite holes is promoted,in view of non-uniform extrusion caused by forced installation.At first,non-uniform extrusion of the hole edge caused by forced installation is analyzed.According to the contact state,expression of hole deformation is given.Then,based on Hertz theory,the maximum extrusion load is obtained with help of deformation expression.By constructing an elastic foundation beam model,3D stress distributed on a hole could be analyzed according to the extrusion load.Then,stress distribution predicted by the above analytical method is compared with that provided by FE considering composite damage.Finally,a forced installation experiment is carried out to analyze the damage distribution of the joint.Results show that a central-symmetrically distributed stress is introduced by the hole-location error.With an increment of the error,strength of composite decreases due to extrusion damage.Therefore,stress presents a concave distribution on the hole.As the hole-location error exceeding 3%,stress decreases gradually due to failure of composite.Damage of holes does not exhibit a centrosymmetric distribution.Serious damage is mainly distributed on the entrance of the hole at the lower sheet.展开更多
To extract the cable forces due to dead load in cable-stayed bridges from the monitoring data,the effects of various factors are eliminated step by step by different statistical methods.The information of cable tensio...To extract the cable forces due to dead load in cable-stayed bridges from the monitoring data,the effects of various factors are eliminated step by step by different statistical methods.The information of cable tension sensors recorded by the health monitoring system of Nanjing No.3 Yangtze River Bridge is taken as an example. Temperature effects are eliminated by linear fitting analysis;a 5-level wavelet de-noising method is applied to eliminate the noise signal by the wavelet basis function of DB8.The rest cable force data is tested by the method of extreme-value type-Ⅲ distribution, and the fitted location parameter is selected as the cable force due to dead load.The results show that the cable force has a linear relationship with temperature. Sometimes, the temperature effect is significant.Noise effect accounts for a small percentage,and the vehicle loads effect has twice the temperature effect on the traffic volume in 2007. The calculation results of other stay cables verify the reliability and validity of the proposed method.展开更多
Grain composition plays a vital role in impact pressure of debris flow. Current approaches treat debris flow as uniform fluid and almost ignore its granular effects. A series of flume experiments have been carried out...Grain composition plays a vital role in impact pressure of debris flow. Current approaches treat debris flow as uniform fluid and almost ignore its granular effects. A series of flume experiments have been carried out to explore the granular influence on the impact process of debris flow by using a contact surface pressure gauge sensor(Tactilus~?, produced by Sensor Products LLC). It is found that the maximum impact pressure for debris flow of low density fluctuates drastically with a long duration time while the fluctuation for flow of high density is short in time, respectively presenting logarithmic and linear form in longitudinal attenuation. This can be ascribed to the turbulence effect in the former and grain collisions and grainfluid interaction in the latter. The horizontal distribution of the impact pressure can be considered as the equivalent distribution. For engineering purposes, the longitudinal distribution of the pressure can be generalized to a triangular distribution, from which a new impact method considering granular effects is proposed.展开更多
A series of experimental studies about the force of internal solitary wave and internal periodic wave on vertical cylinders have been carried out in a two-dimensional layered internal wave flume. The internal solitary...A series of experimental studies about the force of internal solitary wave and internal periodic wave on vertical cylinders have been carried out in a two-dimensional layered internal wave flume. The internal solitary waves are produced by means of gravitational collapse at the layer thickness ratio of 0.2, and the internal periodic waves are produced with rocker-flap wave maker at the layer thickness ratio of 0.93. The wave parameters are obtained through dyeing photography. The vertical cylinders of the same size are arranged in different depths. The horizontal force on each cylinder is measured and the vertical distribution rules are researched. The internal wave heights are changed to study the impact of wave heights on the force. The results show that the horizontal force of concave type internal solitary wave on vertical cylinder in the upper-layer fluid has the same direction as the wave propagating, while it has an opposite direction in the lower-layer. The horizontal force is not evenly distributed in the lower fluid. And the force at different depths increases along with wave height. Internal solitary wave can produce an impact load on the entire pile. The horizontal force of internal periodic waves on the vertical cylinders is periodically changed at the frequency of waves. The direction of the force is opposite in the upper and lower layers, and the value is close. In the upper layer except the depth close to the interface, the force is evenly distributed; but it tends to decrease with the deeper depth in the lower layer. A periodic shear load can be produced on the entire pile by internal periodic waves, and it may cause fatigue damage to structures.展开更多
To understand the vibration noise behaviors of amorphous metal alloy core distribution transformer(AMACDT), a 10 k VA prototype was tested under no-load and short-circuit conditions, respectively. The vibration charac...To understand the vibration noise behaviors of amorphous metal alloy core distribution transformer(AMACDT), a 10 k VA prototype was tested under no-load and short-circuit conditions, respectively. The vibration characteristics were described when rated voltage was applied to the secondary side, and the primary side was connected with different load resistances. The largest amplitude positions on the upper bracket and tank surfaces were recorded by vibration sensors arranged on the surface. A data-acquisition platform was set up for signal measurement. The vibration amplitude related to frequency was discussed, and experimental results indicated that the position with the largest amplitude accrued in the middle of the upper bracket and tank surface, at phases a and c, respectively. The experimental results suggest that magnetostrictive and electrodynamic forces play a major role in exciting the vibration noise. At the same time, some rib-reinforcements were welded on the upper bracket and tank surfaces to lessen the vibration energy, which reduced the noise.展开更多
An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separate...An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separated into two horizontal layers: a vegetation layer and a free water layer. In the vegetation layer, a mechanical analysis for the flexible vegetation is conducted, and an approximately linear relationship between the drag force of bending vegetation and the streamwise mean flow velocity is observed in the case of large deflection, which differes significantly from the case of rigid upright vegetation. Based on the theoretical analysis, a linear streamwise drag force-mean flow velocity expression in the momentum equation is derived, and an analytical solution is obtained. For the free water layer, a new expression is presented, replacing the traditional logarithmic velocity distribution, to obtain a zero velocity gradient at the water surface. Finally, the analytical predictions are compared with published experimental data, and the good agreement demonstrates that this model is effective for the open channel flow through the large deflection flexible vegetation.展开更多
In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating acco...In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.展开更多
文摘This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
文摘The theory of three-dimensional deformation is used.Based on rigid plastic assumption, the theory of stick friction and the sheet crown curve at the entry and the exit are used. The mathematical analytical formula of the rolling force in lateral distribution is deriven.
基金Project(JS-102)supported by the National Key Science and Technological Program of China for Electric VehiclesProject supported by Jilin University "985 Project" Engineering Bionic Technology Innovation Platform,China
文摘Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.
文摘The level ice thickness and compressive strength at the four measuring stations in the Liaodong Bay are inferred according to the hydrologic and meteorologic data there, then the yearly extreme ice forces on a solitary pile are calculated by the use of appropriate formula of ice forces and its probabilistic distribution is determined. Generally, the yearly extreme ice force follows Weibull distribution best as compared with Normal, Lognormal, and Extreme Value I distribution. On the other hand, the short-term distribution of ice forces on a solitary pile is obtained from the model experiment data analysis: It does not refuse Extreme Value I distribution.
文摘Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.
基金the National Natural Science Foundation of China (50122155)
文摘Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.
文摘In our relevant paper[Zhao S X(2021)Chin.Phys.B 30055201],a delta distribution of negative ions is given by fluid simulation and preliminarily explained by decomposed anions transport equation.In the present work,first,the intrinsic connection between the electropositive plasma transport equation and spring oscillator dynamic equation is established.Inspired by this similarity,reformed“spring oscillator”equation with dispersing instead of restoring force that gives quasi-delta solution is devised according to the math embodied in the anion equation,which is of potential significance to the disciplines of atomic physics and astronomy as well.For solving the“diffusion confusion”the physics that determines the delta profile within the continuity equation is explored on the basis that recombination loss source term plays the role of drift flux,which is applicable for fluid model of low temperature plasma,but not the ordinary fluid dynamics.Besides,the math and physics revealed in this work predict that the ratio of recombination or attachment(for electrons)frequency versus the species diffusion coefficient is a very important parameter in determining the delta distribution,as it acts as the acceleration of object,according to the reformed oscillator equation.With this theory,the analogous delta profile of electrons density in the famous drift and ambi-polar diffusion heating mechanism of electronegative capacitively coupled plasma is interpreted.
基金Sponsored by the National Basic Research Program of China(Grant No.2011CB012800 and 2011CB012804)
文摘Electromagnetic V-shape bending of small size sheet blank is investigated numerically and experimentally. Three-dimensional electromagnetic field models are established to calculate the magnetic force distribution on the sheet by software ANSYS / EMAG. Series of electromagnetic V-shape bending forming experiments are presented,in which small size uniform pressure coil and big size round flat spiral coil are used. The results show that small size uniform pressure coil is not suitable for electromagnetic forming of small size flat sheet,and the coil is susceptible to failure such as bulging,ablation and cracking. When the plane dimension of round flat spiral coil is bigger than sheet blank sizes,the induced current crowding effect will be resulted which seriously influence the magnetic force distribution on the sheet. In this case,magnetic force distribution can be adjusted through the change of the relative position between coil and sheet,the desired deformation can be obtained finally. Therefore,big size round flat spiral coil can be well applied to electromagnetic V-shape bending forming of small size flat sheet.
基金National Natural Science Foundation of China(Grant Nos.52075467,51875495)Key Project of Natural Science Foundation of Hebei Province of China(Grant No.E2017203335)Hebei Provincial Science and Technology Project of China(Grant No.206Z1805G)。
文摘Overconstrained mechanism has the advantages of large bearing capacity and high motion reliability,but its force analysis is complex and difficult because the mechanism system contains overconstraints.Considering the limb axial deformation,taking typical 2SS+P and 7-SS passive overconstrained mechanisms,2SPS+P and 7-SPS active overconstrained mechanisms,and 2SPS+P and 7-SPS passive-input overconstrained mechanisms as examples,a new force analysis method based on the idea of equivalent stiffness is proposed.The equivalent stiffness matrix of passive overconstrained mechanism is derived by combining the force balance and deformation compatibility equations with consideration of axial elastic limb deformations.The relationship between the constraint wrench magnitudes and the external force,limb stiffness is established.The equivalent stiffness matrix of active overconstrained mechanism is derived by combining the force balance and displacement compatibility equations.Here,the relationship between the magnitudes of the actuated wrenches and the external force,limb stiffness is investigated.Combining with the equivalent stiffness of the passive overconstrained mechanism,an analytical relationship between the actuated forces of passive-input overconstrained mechanism and the output displacement,limb stiffness is explored.Finally,adaptability of the equivalent stiffness to overconstrained mechanisms is discussed,and the effect of the limb stiffness on overconstrained mechanisms force distribution is revealed.The research results provide a theoretical reference for the design,research and practical application of overconstrained mechanism.
基金the National Natural Science Foundation of China under grants:!49675259 and 49735180, the State Key Basic Program' CHERES.
文摘If the initial fields are not in geostrophic balance, the adjustment and evolution will occur in the stratified fluid. and the frontogenesis will occur under suitable conditions. The evolution is studied here with a nonhydrostatic fully compressible meso-scale model (Advanced Regional Prediction System, ARPS). Four cases are designed and compared: (i) control experiment: (ii) with different initial temperature gradient; (iii) with vapor distribution; (iv) with orographic forcing. The results show that: (1) there is an inertial oscillation in the evolution of the imbalanced flow with the frequency of the local Coriolis f, and with its amplitude decreasing with time. The stationary balanced state can only be approached as it cannot be reached in the limit duration of time. The energy conversion ratio varies in the range of [0, 1; 3]; (2) the stronger initial temperature gradient can make the final energy conversion ratio higher. and vice versa; (3) suitable vapor distribution is favorable for the frontogenesis. It will bring forward the time of the frontogenesis, strengthen the intensity of the cold front, and influence the final energy conversion ratio; (4) the orographic forcing has an evidently strengthening effect on the frontogenesis. The strengthening effect on the frontogenesis and the influence on the final energy conversion ratio depend on the relative location of the mountain to the cold front.
文摘Gravity is considered one of the most mysterious of the four fundamental forces, a well-studied but poorly understood phenomenon in science. Newtonian physics and General Relativity have studied it from outside. Based on fundamental forces the Grand Unified Theory (GUT) and the Standard Model (SM) of Particle Physics study from the inside. GUT and SM explain three fundamental forces that govern the universe: electromagnetism, the strong force, and the weak force. The fourth fundamental force hopes that must be gravity, which the SM cannot adequately explain. The research aims to explain fundamental forces and their interactions based on the hysteresis law. The hysteresis law studies the fundamental forces from both inside and outside, so, I hope it can explain the rules and principles of the universe from the microworld to the macroscopic world. The united force of the three fundamental forces in high energy singularity (vertical asymptote) of the hysteresis becomes the weakest like weak interaction and continuously like strong force but has an infinite range like electromagnetic interaction. In this sense, it may be called gravity. Unfortunately, gravity is not an individual force;it is the positive singularity or high energy asymptotic sum of three fundamental forces emerging from the depth of the hysteresis of the subatomic particles.
基金co-supported by the National Natural Science Foundation of China(No.51975472)the Fundamental Scientific Research,China(No.JCKY2021205B110).
文摘In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on composite holes is promoted,in view of non-uniform extrusion caused by forced installation.At first,non-uniform extrusion of the hole edge caused by forced installation is analyzed.According to the contact state,expression of hole deformation is given.Then,based on Hertz theory,the maximum extrusion load is obtained with help of deformation expression.By constructing an elastic foundation beam model,3D stress distributed on a hole could be analyzed according to the extrusion load.Then,stress distribution predicted by the above analytical method is compared with that provided by FE considering composite damage.Finally,a forced installation experiment is carried out to analyze the damage distribution of the joint.Results show that a central-symmetrically distributed stress is introduced by the hole-location error.With an increment of the error,strength of composite decreases due to extrusion damage.Therefore,stress presents a concave distribution on the hole.As the hole-location error exceeding 3%,stress decreases gradually due to failure of composite.Damage of holes does not exhibit a centrosymmetric distribution.Serious damage is mainly distributed on the entrance of the hole at the lower sheet.
基金The National Natural Science Foundation of China(No.51208096)the Major Scientific and Technological Special Project of Jiangsu Provincial Communications Department(No.2014Y02)
文摘To extract the cable forces due to dead load in cable-stayed bridges from the monitoring data,the effects of various factors are eliminated step by step by different statistical methods.The information of cable tension sensors recorded by the health monitoring system of Nanjing No.3 Yangtze River Bridge is taken as an example. Temperature effects are eliminated by linear fitting analysis;a 5-level wavelet de-noising method is applied to eliminate the noise signal by the wavelet basis function of DB8.The rest cable force data is tested by the method of extreme-value type-Ⅲ distribution, and the fitted location parameter is selected as the cable force due to dead load.The results show that the cable force has a linear relationship with temperature. Sometimes, the temperature effect is significant.Noise effect accounts for a small percentage,and the vehicle loads effect has twice the temperature effect on the traffic volume in 2007. The calculation results of other stay cables verify the reliability and validity of the proposed method.
基金funded by the Research on Prevention and Control Technology of Ecological Debris Flow Disasters from Department of Land and Resources of Sichuan Province (Grant No. KJ2018-24)the Natural Science Foundation of China (Grant No. 41772343)+2 种基金the Chinese Academy of Sciences and Organization Department of Sichuan Provincial Party Committee "Light of West China" Program (the key control techniques of glacial debris flow along the Sichuan-Tibet Railway)the Key International S&T Cooperation Projects (Grant No. 2016YFE0122400)the Natural Science Foundation of China (Grant No. 41471011)
文摘Grain composition plays a vital role in impact pressure of debris flow. Current approaches treat debris flow as uniform fluid and almost ignore its granular effects. A series of flume experiments have been carried out to explore the granular influence on the impact process of debris flow by using a contact surface pressure gauge sensor(Tactilus~?, produced by Sensor Products LLC). It is found that the maximum impact pressure for debris flow of low density fluctuates drastically with a long duration time while the fluctuation for flow of high density is short in time, respectively presenting logarithmic and linear form in longitudinal attenuation. This can be ascribed to the turbulence effect in the former and grain collisions and grainfluid interaction in the latter. The horizontal distribution of the impact pressure can be considered as the equivalent distribution. For engineering purposes, the longitudinal distribution of the pressure can be generalized to a triangular distribution, from which a new impact method considering granular effects is proposed.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51279187 and 41174157)the Fundamental Research Funds for the Central Universities(Grant No.201262005)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(Grant No.BS2013HZ014)
文摘A series of experimental studies about the force of internal solitary wave and internal periodic wave on vertical cylinders have been carried out in a two-dimensional layered internal wave flume. The internal solitary waves are produced by means of gravitational collapse at the layer thickness ratio of 0.2, and the internal periodic waves are produced with rocker-flap wave maker at the layer thickness ratio of 0.93. The wave parameters are obtained through dyeing photography. The vertical cylinders of the same size are arranged in different depths. The horizontal force on each cylinder is measured and the vertical distribution rules are researched. The internal wave heights are changed to study the impact of wave heights on the force. The results show that the horizontal force of concave type internal solitary wave on vertical cylinder in the upper-layer fluid has the same direction as the wave propagating, while it has an opposite direction in the lower-layer. The horizontal force is not evenly distributed in the lower fluid. And the force at different depths increases along with wave height. Internal solitary wave can produce an impact load on the entire pile. The horizontal force of internal periodic waves on the vertical cylinders is periodically changed at the frequency of waves. The direction of the force is opposite in the upper and lower layers, and the value is close. In the upper layer except the depth close to the interface, the force is evenly distributed; but it tends to decrease with the deeper depth in the lower layer. A periodic shear load can be produced on the entire pile by internal periodic waves, and it may cause fatigue damage to structures.
基金Supported by the National Natural Science Foundation of China(No.51277131)the National Basic Research Program of China("973" Program,No.2014CB239501 and No.2014CB239506)
文摘To understand the vibration noise behaviors of amorphous metal alloy core distribution transformer(AMACDT), a 10 k VA prototype was tested under no-load and short-circuit conditions, respectively. The vibration characteristics were described when rated voltage was applied to the secondary side, and the primary side was connected with different load resistances. The largest amplitude positions on the upper bracket and tank surfaces were recorded by vibration sensors arranged on the surface. A data-acquisition platform was set up for signal measurement. The vibration amplitude related to frequency was discussed, and experimental results indicated that the position with the largest amplitude accrued in the middle of the upper bracket and tank surface, at phases a and c, respectively. The experimental results suggest that magnetostrictive and electrodynamic forces play a major role in exciting the vibration noise. At the same time, some rib-reinforcements were welded on the upper bracket and tank surfaces to lessen the vibration energy, which reduced the noise.
基金Project supported by the National Natural Science Foundation of China(Nos.11372232 and 51479007)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130141110016)the State Water Pollution Control and Management of Major Special Science and Technology(No.2012ZX07205-005-03)
文摘An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separated into two horizontal layers: a vegetation layer and a free water layer. In the vegetation layer, a mechanical analysis for the flexible vegetation is conducted, and an approximately linear relationship between the drag force of bending vegetation and the streamwise mean flow velocity is observed in the case of large deflection, which differes significantly from the case of rigid upright vegetation. Based on the theoretical analysis, a linear streamwise drag force-mean flow velocity expression in the momentum equation is derived, and an analytical solution is obtained. For the free water layer, a new expression is presented, replacing the traditional logarithmic velocity distribution, to obtain a zero velocity gradient at the water surface. Finally, the analytical predictions are compared with published experimental data, and the good agreement demonstrates that this model is effective for the open channel flow through the large deflection flexible vegetation.
基金supported by the National Natural Science Foundation of China(11101451)Ph.D.Programs Foundation of Ministry of Education of China(20110191110033)
文摘In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.