AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using ...AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.展开更多
To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root u...To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.展开更多
The tethered satellite system has a great potential and one of its very useful applications is momentum transfer. Raising a payload by deploying it upward from an orbitor on a long tether and then releasing it represe...The tethered satellite system has a great potential and one of its very useful applications is momentum transfer. Raising a payload by deploying it upward from an orbitor on a long tether and then releasing it represents a rather important possible application with significant fael economy. This paper presents a dynamic model set up for a two body tethered satellite system and two control laws of deployment used to simulate the deployment of the system, gives calculation formulas for six orbital elements of two sub satellites and discusses calculation examples.展开更多
This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful to...This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful tool used to propagate position and velocity,the present results show that using orbital elements to propagate the state vector reduces the number of MCPI iterations and nodes required,which is especially useful for reducing the computation time when including computationally-intensive calculations such as Spherical Harmonic gravity,and it also converges for>5.5x as many revolutions using a single segment when compared with cartesian propagation.Results for the Classical Orbital Elements and the Modified Equinoctial Orbital Elements(the latter provides singularity-free solutions)show that state propagation using these variables is inherently well-suited to the propagation method chosen.Additional benefits are achieved using a segmentation scheme,while future expansion to the two-point boundary value problem is expected to increase the domain of convergence compared with the cartesian case.MCPI is an iterative numerical method used to solve linear and nonlinear,ordinary differential equations(ODEs).It is a fusion of orthogonal Chebyshev function approximation with Picard iteration that approximates a long-arc trajectory at every iteration.Previous studies have shown that it outperforms the state of the practice numerical integrators of ODEs in a serial computing environment;since MCPI is inherently massively parallelizable,this capability is expected to increase the computational efficiency of the method presented.展开更多
An analytical theory for calculating perturbations of the orbital elements of a satellite due to J2 to accuracy up to fourth power in eccentricity is developed. It is observed that there is significant improvement in ...An analytical theory for calculating perturbations of the orbital elements of a satellite due to J2 to accuracy up to fourth power in eccentricity is developed. It is observed that there is significant improvement in all the orbital elements with the present theory over second-order theory. The theory is used for computing the mean orbital elements, which are found to be more accurate than provided by Bhatnagar and taqvi’s theory (up to second power in eccentricity). Mean elements have a large number of practical applications.展开更多
Low earth orbit satellites,with unique advantages,are prosperous types of navigation augmentation satellites for the GNSS satellites constellations.The broadcast ephemeris element needs to be designed as an important ...Low earth orbit satellites,with unique advantages,are prosperous types of navigation augmentation satellites for the GNSS satellites constellations.The broadcast ephemeris element needs to be designed as an important index of the augmented LEOs.The GPS ephemerides of 16/18 elements cannot be directly applied to the LEOs because of the poor fitting accuracies in along-track positional component.Besides,the ill-conditioned problem of the normal-matrix exists in fitting algorithm due to the small eccentricity of the LEO orbits.Based on the nonsingular orbital elements,5 sets of ephemerides with element numbers from 16 to 19 were designed respectively by adding or modifying orbital elements magnifying the along-track and radial positional components.The fitting experiments based on the LEO of 300 to 1500 km altitudes show that the fitting UREs of the proposed 16/17/18/18*/19-element ephemerides are better than 10/6/4/5/2.5 cm,respectively.According to the dynamical range of the fitting elements,the interfaces were designed for the 5 sets of ephemerides.The effects of data truncation on fitting UREs are at millimeter level.The total bits are 329/343/376/379/396,respectively.29/15 bits are saved for the 16/17-element ephemerides compared with the GPS16 ephemeris,while 64/61/41 bits can be saved for the 18/18*/19-element ephemerides compared with the GPS18 elements ephemeris.展开更多
In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J<SUB>2</SUB> perturbation are studied, and an orbital elements method is proposed to obtain t...In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J<SUB>2</SUB> perturbation are studied, and an orbital elements method is proposed to obtain the relative orbital configurations of satellites in formation. Firstly, under the condition of non-perturbation, we obtain many shapes of relative orbital configurations when the semi-major axes of satellites are equal. These shapes can be lines, ellipses or distorted closed curves. Secondly, on the basis of the analysis of J<SUB>2</SUB> effect on relative orbital configurations, we find out that J<SUB>2</SUB> effect can induce two kinds of changes of relative orbital configurations. They are distortion and drifting, respectively. In addition, when J<SUB>2</SUB> perturbation is concerned, we also find that the semi-major axes of the leading and following satellites should not be the same exactly in order to decrease the J<SUB>2</SUB> effect. The relationship of relative orbital elements and J<SUB>2</SUB> effect is obtained through simulations. Finally, the minimum relation perturbation conditions are established in order to reduce the influence of the J<SUB>2</SUB> effect. The results show that the minimum relation perturbation conditions can reduce the J<SUB>2</SUB> effect significantly when the orbital element differences are small enough, and they can become rules for the design of satellite formation flying.展开更多
A middle-aged male patient with a right orbital comminuted fracture underwent computer tomography scanning, and a three-dimensional finite element model of the eyes and relevant tissues was established. Optic nerve st...A middle-aged male patient with a right orbital comminuted fracture underwent computer tomography scanning, and a three-dimensional finite element model of the eyes and relevant tissues was established. Optic nerve stress in a hyperbaric oxygen environment was simulated and analyzed by changing the elastic modulus and external pressure of the skull at the damage side. Results showed that stress maximized at the contact site of the optic nerve and the eyeball in the damaged and intact eye orbits. Optic nerve stress at the damaged orbit significantly increased; however, stress in the intact orbit only slightly changed with decreased elastic modulus of the skull while external pressure remained unchanged. Maximum optic nerve stress increased in the damaged and intact side, along with increased external pressure, while elastic modulus remained unchanged. These experimental findings suggested that the optic nerve was compressed under hyperbaric oxygen and optic nerve stress was greater in the damaged orbit than in the intact orbit.展开更多
Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliabilit...Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliability of the propagated positions of space objects using a single TLE.The least squares approach to use multiple TLEs also suffers from the poor quality of some TLEs,and reliable error information cannot be available.This paper proposes a simplex algorithm to estimate an optimal TLE from multiple TLEs and obtain the uncertainty of each element.It is a derivative-free technique that can deal with various orbit types.Experiments have demonstrated that using the TLE estimated from the simplex method is more reliable,stable,and effective than those from the batch least squares method.As an application example,the optimal TLE and its uncertainty are used for predicting the fallen area,keeping the actual fallen site in the prediction areas.展开更多
连线干涉测量(Connected Element Interferometry,CEI)是一种全天时全天候的被动测角技术,已用于空间目标的跟踪监视.地球静止轨道(Geostationary Earth Orbit,GEO)卫星需要频繁机动以保持轨位或完成其他任务,其机动后的快速轨道恢复能...连线干涉测量(Connected Element Interferometry,CEI)是一种全天时全天候的被动测角技术,已用于空间目标的跟踪监视.地球静止轨道(Geostationary Earth Orbit,GEO)卫星需要频繁机动以保持轨位或完成其他任务,其机动后的快速轨道恢复能力对于监视预警极为重要.针对基于CEI的GEO短弧定轨和预报,分析了定轨算法的形亏和数亏,在附加先验轨道约束的短弧定轨基础上,提出了轨道半长轴初值的自适应优化方法.利用亚太七号卫星的CEI仿真和实测数据进行了短弧定轨和预报,实验结果表明,采用优化后的半长轴初值,30min短弧定轨和10min预报的卫星位置分量精度均优于4km,能够满足非合作GEO目标机动后快速轨道恢复的需求.展开更多
针对目前大多数机器学习模型预测材料性质时需要大量的先验知识以及特征向量筛选困难的问题,基于电子轨道矩阵和元素周期表法两种描述符,通过特征融合的方式,设计了一种卷积神经网络模型OPCNN(Orbital of electron and Periodic table C...针对目前大多数机器学习模型预测材料性质时需要大量的先验知识以及特征向量筛选困难的问题,基于电子轨道矩阵和元素周期表法两种描述符,通过特征融合的方式,设计了一种卷积神经网络模型OPCNN(Orbital of electron and Periodic table CNN)。实验数据表明,OPCNN与其他预测模型相比,在带隙、生成热以及形成能数据集上都有着更好的性能,平均绝对误差分别为0.26 eV、0.037 KJ/mol和0.073 eV/atom,且R^(2)都达到了91%以上。OPCNN在保证了预测准确性的同时对先验知识的要求更低,只需要元素周期表中的信息即可预测材料性质,特征融合的思想可以让特征设计更加灵活,有利于新材料体系快速和准确的预测。展开更多
基金Supported by the National Natural Science Foundation of China(No.82060181)General Project funded by the Jiangxi Provincial Department of Education(No.GJJ2200194).
文摘AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.
基金This work was supported by National Natural Science Foundation of China(12372045)Shanghai Aerospace Science and Technology Program(SAST2021-030).
文摘To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.
文摘The tethered satellite system has a great potential and one of its very useful applications is momentum transfer. Raising a payload by deploying it upward from an orbitor on a long tether and then releasing it represents a rather important possible application with significant fael economy. This paper presents a dynamic model set up for a two body tethered satellite system and two control laws of deployment used to simulate the deployment of the system, gives calculation formulas for six orbital elements of two sub satellites and discusses calculation examples.
文摘This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful tool used to propagate position and velocity,the present results show that using orbital elements to propagate the state vector reduces the number of MCPI iterations and nodes required,which is especially useful for reducing the computation time when including computationally-intensive calculations such as Spherical Harmonic gravity,and it also converges for>5.5x as many revolutions using a single segment when compared with cartesian propagation.Results for the Classical Orbital Elements and the Modified Equinoctial Orbital Elements(the latter provides singularity-free solutions)show that state propagation using these variables is inherently well-suited to the propagation method chosen.Additional benefits are achieved using a segmentation scheme,while future expansion to the two-point boundary value problem is expected to increase the domain of convergence compared with the cartesian case.MCPI is an iterative numerical method used to solve linear and nonlinear,ordinary differential equations(ODEs).It is a fusion of orthogonal Chebyshev function approximation with Picard iteration that approximates a long-arc trajectory at every iteration.Previous studies have shown that it outperforms the state of the practice numerical integrators of ODEs in a serial computing environment;since MCPI is inherently massively parallelizable,this capability is expected to increase the computational efficiency of the method presented.
文摘An analytical theory for calculating perturbations of the orbital elements of a satellite due to J2 to accuracy up to fourth power in eccentricity is developed. It is observed that there is significant improvement in all the orbital elements with the present theory over second-order theory. The theory is used for computing the mean orbital elements, which are found to be more accurate than provided by Bhatnagar and taqvi’s theory (up to second power in eccentricity). Mean elements have a large number of practical applications.
文摘Low earth orbit satellites,with unique advantages,are prosperous types of navigation augmentation satellites for the GNSS satellites constellations.The broadcast ephemeris element needs to be designed as an important index of the augmented LEOs.The GPS ephemerides of 16/18 elements cannot be directly applied to the LEOs because of the poor fitting accuracies in along-track positional component.Besides,the ill-conditioned problem of the normal-matrix exists in fitting algorithm due to the small eccentricity of the LEO orbits.Based on the nonsingular orbital elements,5 sets of ephemerides with element numbers from 16 to 19 were designed respectively by adding or modifying orbital elements magnifying the along-track and radial positional components.The fitting experiments based on the LEO of 300 to 1500 km altitudes show that the fitting UREs of the proposed 16/17/18/18*/19-element ephemerides are better than 10/6/4/5/2.5 cm,respectively.According to the dynamical range of the fitting elements,the interfaces were designed for the 5 sets of ephemerides.The effects of data truncation on fitting UREs are at millimeter level.The total bits are 329/343/376/379/396,respectively.29/15 bits are saved for the 16/17-element ephemerides compared with the GPS16 ephemeris,while 64/61/41 bits can be saved for the 18/18*/19-element ephemerides compared with the GPS18 elements ephemeris.
基金The project supported by the National Natural Science Foundation of China(10202008)Specialized Research Fund for the Doctoral Program of Higher Education(20020003024)
文摘In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J<SUB>2</SUB> perturbation are studied, and an orbital elements method is proposed to obtain the relative orbital configurations of satellites in formation. Firstly, under the condition of non-perturbation, we obtain many shapes of relative orbital configurations when the semi-major axes of satellites are equal. These shapes can be lines, ellipses or distorted closed curves. Secondly, on the basis of the analysis of J<SUB>2</SUB> effect on relative orbital configurations, we find out that J<SUB>2</SUB> effect can induce two kinds of changes of relative orbital configurations. They are distortion and drifting, respectively. In addition, when J<SUB>2</SUB> perturbation is concerned, we also find that the semi-major axes of the leading and following satellites should not be the same exactly in order to decrease the J<SUB>2</SUB> effect. The relationship of relative orbital elements and J<SUB>2</SUB> effect is obtained through simulations. Finally, the minimum relation perturbation conditions are established in order to reduce the influence of the J<SUB>2</SUB> effect. The results show that the minimum relation perturbation conditions can reduce the J<SUB>2</SUB> effect significantly when the orbital element differences are small enough, and they can become rules for the design of satellite formation flying.
基金the National Natural Science Foundation of China (Key Program),No.11032008the National Natural Science Foundation of China (General Program),No. 10872140+1 种基金10702048the Natural Science Foundation of Shanxi Province,No.2010021004-1
文摘A middle-aged male patient with a right orbital comminuted fracture underwent computer tomography scanning, and a three-dimensional finite element model of the eyes and relevant tissues was established. Optic nerve stress in a hyperbaric oxygen environment was simulated and analyzed by changing the elastic modulus and external pressure of the skull at the damage side. Results showed that stress maximized at the contact site of the optic nerve and the eyeball in the damaged and intact eye orbits. Optic nerve stress at the damaged orbit significantly increased; however, stress in the intact orbit only slightly changed with decreased elastic modulus of the skull while external pressure remained unchanged. Maximum optic nerve stress increased in the damaged and intact side, along with increased external pressure, while elastic modulus remained unchanged. These experimental findings suggested that the optic nerve was compressed under hyperbaric oxygen and optic nerve stress was greater in the damaged orbit than in the intact orbit.
基金supported by Chongqing Municipal Natural Science Foundation of General Program(CSTB2022NSCQMSX1093)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200701)China Postdoctoral Science Foundation(2021M703487).
文摘Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliability of the propagated positions of space objects using a single TLE.The least squares approach to use multiple TLEs also suffers from the poor quality of some TLEs,and reliable error information cannot be available.This paper proposes a simplex algorithm to estimate an optimal TLE from multiple TLEs and obtain the uncertainty of each element.It is a derivative-free technique that can deal with various orbit types.Experiments have demonstrated that using the TLE estimated from the simplex method is more reliable,stable,and effective than those from the batch least squares method.As an application example,the optimal TLE and its uncertainty are used for predicting the fallen area,keeping the actual fallen site in the prediction areas.
文摘连线干涉测量(Connected Element Interferometry,CEI)是一种全天时全天候的被动测角技术,已用于空间目标的跟踪监视.地球静止轨道(Geostationary Earth Orbit,GEO)卫星需要频繁机动以保持轨位或完成其他任务,其机动后的快速轨道恢复能力对于监视预警极为重要.针对基于CEI的GEO短弧定轨和预报,分析了定轨算法的形亏和数亏,在附加先验轨道约束的短弧定轨基础上,提出了轨道半长轴初值的自适应优化方法.利用亚太七号卫星的CEI仿真和实测数据进行了短弧定轨和预报,实验结果表明,采用优化后的半长轴初值,30min短弧定轨和10min预报的卫星位置分量精度均优于4km,能够满足非合作GEO目标机动后快速轨道恢复的需求.
文摘针对目前大多数机器学习模型预测材料性质时需要大量的先验知识以及特征向量筛选困难的问题,基于电子轨道矩阵和元素周期表法两种描述符,通过特征融合的方式,设计了一种卷积神经网络模型OPCNN(Orbital of electron and Periodic table CNN)。实验数据表明,OPCNN与其他预测模型相比,在带隙、生成热以及形成能数据集上都有着更好的性能,平均绝对误差分别为0.26 eV、0.037 KJ/mol和0.073 eV/atom,且R^(2)都达到了91%以上。OPCNN在保证了预测准确性的同时对先验知识的要求更低,只需要元素周期表中的信息即可预测材料性质,特征融合的思想可以让特征设计更加灵活,有利于新材料体系快速和准确的预测。