Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challe...Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challenges due to the complex law of decline, nonlinear and non-stationary features in production data, which greatly repair the robustness of current models in predicting shale gas production time series. To address these challenges and improve accuracy in production forecasting, this paper introduces a novel and innovative approach: a hybrid proxy model that combines the bidirectional long short-term memory(BiLSTM) neural network and random forest(RF) through deep learning. The BiLSTM neural network is adept at capturing long-term dependencies, making it suitable for understanding the intricate relationships between input and output variables in shale gas production.On the other hand, RF serves a dual purpose: reducing model variance and addressing the concept drift problem that arises in non-stationary time series predictions made by BiLSTM. By integrating these two models, the hybrid approach effectively captures the inherent dependencies present in long and nonstationary production time series, thereby reducing model uncertainty. Furthermore, the combination of BiLSTM and RF is optimized using the recently-proposed marine predators algorithm(MPA) to fine-tune hyperparameters and enhance the overall performance of the proxy model. The results demonstrate that the proposed BiLSTM-RF-MPA model achieves higher prediction accuracy and demonstrates stronger generalization capabilities by effectively handling the complex nonlinear and non-stationary characteristics of shale gas production time series. Compared to other models such as LSTM, BiLSTM, and RF, the proposed model exhibits superior fitting and prediction performance, with an average improvement in performance indicators exceeding 20%. This innovative framework provides valuable insights for forecasting the complex production performance of unconventional oil and gas reservoirs, which sheds light on the development of data-driven proxy models in the field of subsurface energy utilization.展开更多
A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochast...A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (10-year) environmental planning and decision making.展开更多
Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran...Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran from 2011 to 2017.We used decomposition methods to explore seasonality and long-term trends and applied the Autoregressive Integrated Moving Average(ARIMA)model to fit a univariate time series of animal bite incidence.The ARIMA modeling process involved selecting the time series,transforming the series,selecting the appropriate model,estimating parameters,and forecasting.Results:Our results using the Box Jenkins model showed a significant seasonal trend and an overall increase in animal bite incidents during the study period.The best-fitting model for the available data was a seasonal ARIMA model with drift in the form of ARIMA(2,0,0)(1,1,1).This model can be used to forecast the frequency of animal attacks in northwest Iran over the next two years,suggesting that the incidence of animal attacks in the region would continue to increase during this time frame(2018-2019).Conclusion:Our findings suggest that time series analysis is a useful method for investigating animal bite cases and predicting future occurrences.The existence of a seasonal trend in animal bites can also aid in planning healthcare services during different seasons of the year.Therefore,our study highlights the importance of implementing proactive measures to address the growing issue of animal bites in Iran.展开更多
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ...This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.展开更多
This paper presents an option for modern dynamic terrestrial reference system realization in Uzbekistan for user needs. An additive model is explored to predict patterns of time series and investigate means of constru...This paper presents an option for modern dynamic terrestrial reference system realization in Uzbekistan for user needs. An additive model is explored to predict patterns of time series and investigate means of constructing forecast time series models in the future. The main components(trend, periodical, and irregular) of the KIUB(DORIS) and KIT3, TASH, MADK, and MTAL(GNSS) international stations coordinate time series were investigated. It was shown that seasonal nonlinear trends occurred both in the height(U) component of all stations and the east(E) component of high mountainous stations such as MTAL and MADK. The seasonal periodical portion of the time series determined from the additive model has a complicated pattern for all sites and can be explained as both hydrological signals in the region and improvement of observational quality. Amplitudes of the best-fitting sinusoids in the North component ranged between 1.73 and 8.76 mm; the East component ranged between 0.82 and 11.92 mm; and the Up component ranged between 3.11 and 40.81 mm. Regression analysis of the irregular portion of the height component of the two techniques at the Kitab station using tropospheric parameters(pressure and temperature) was confirmed as only 57% of the stochastic portion of the time series.展开更多
In this study we establish the probability density function of the square transformed left-truncated N(1,σ2) error component of the multiplicative time series model and the functional expressions for its mean and var...In this study we establish the probability density function of the square transformed left-truncated N(1,σ2) error component of the multiplicative time series model and the functional expressions for its mean and variance. Furthermore the mean and variance of the square transformed left-truncated N(1,σ2) error component and those of the untransformed component were compared for the purpose of establishing the interval for σ where the properties of the two distributions are approximately the same in terms of equality of means and normality. From the results of the study, it was established that the two distributions are normally distributed and have means ≌1.0 correct to 1 dp in the interval 0 σ , hence a successful square transformation where necessary is achieved for values of σ such that 0 σ .展开更多
Eggs,as a meat consumer product in China,are closely related to the vegetable basket project.Exploring and predicting the future trend of egg market price is of great significance for stabilizing egg price and market ...Eggs,as a meat consumer product in China,are closely related to the vegetable basket project.Exploring and predicting the future trend of egg market price is of great significance for stabilizing egg price and market supply.In this study,the time series AR model was used for fitting the egg market prices in the 66 d from January 1 to March 7,2021,and the delay operator nlag18 was used for white noise test,giving pr>probability of chisq<0.005.The time series was not a white noise series,and then the stationary series was used for modeling.The optimal model was selected as the AR series(BIC(3,0)),and finally,the egg market price model AM was obtained as X_(t)=9.0556+(1+0.8926)ε_(t),which was the optimal model.The model showed that the egg price fluctuations in 2021 will be clustered,and the later price will be significantly affected by external factors in the previous period.The dynamic prediction results of the model showed that the egg price would stop falling in March 2020,and the egg price would continue to slow down in March.展开更多
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced...Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.展开更多
In machine learning, selecting useful features and rejecting redundant features is the prerequisite for better modeling and prediction. In this paper, we first study representative feature selection methods based on c...In machine learning, selecting useful features and rejecting redundant features is the prerequisite for better modeling and prediction. In this paper, we first study representative feature selection methods based on correlation analysis, and demonstrate that they do not work well for time series though they can work well for static systems. Then, theoretical analysis for linear time series is carried out to show why they fail. Based on these observations, we propose a new correlation-based feature selection method. Our main idea is that the features highly correlated with progressive response while lowly correlated with other features should be selected, and for groups of selected features with similar residuals, the one with a smaller number of features should be selected. For linear and nonlinear time series, the proposed method yields high accuracy in both feature selection and feature rejection.展开更多
In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical cri...In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical criterion for crack initiation was proposed.展开更多
This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is intro...This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.展开更多
Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been develop...Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been developed for modeling and predicting time series. In the traditional exponential smoothing method, a fixed weight is assigned to data history, and the trend changes of time series are ignored. In this paper, an uncertainty reasoning method, based on cloud model, is employed in time series prediction, which uses cloud logic controller to adjust the smoothing coefficient of the simple exponential smoothing method dynamically to fit the current trend of the time series. The validity of this solution was proved by experiments on various data sets.展开更多
Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference ...Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference information for JE control and prevention. Methods Theoretically epidemiologic study was employed in the research process. Monthly incidence data on JE for the period from Jan 2005 to Sep 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang, Shaanxi province. An optimal SARIMA model was developed for JE incidence from 2005 to 2013 with the Box and Jenkins approach. This SARIMA model could predict JE incidence for the year 2014 and 2015. Results SARIMA (1, 1, 1) (2, 1, 1)12 was considered to be the best model with the lowest Bayesian information criterion, Akaike information criterion, Mean Absolute Error values, the highest R2, and a lower Mean Absolute Percent Error. SARIMA (1, 1, 1) (2, 1, 1)12 was stationary and accurate for predicting JE incidence in Xianyang. The predicted incidence, around 0.3/100 000 from June to August in 2014 with low errors, was higher compared with the actual incidence. Therefore, SARIMA (1, 1, 1) (2, 1, 1)12 appeared to be reliable and accurate and could be applied to incidence prediction. Conclusions The proposed prediction model could provide clues to early identification of the JE incidence that is increased abnormally (≥0.4/100 000). According to the predicted results in 2014, the JE incidence in Xianyang will decline slightly and reach its peak from June to August.The authors wish to thank the staff from the CDCs from 13 counties of Xianyang, Shaanxi province, China, for their contribution to Japanese encephalitis cases reporting.展开更多
Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuz...Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy.展开更多
Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is ...Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is insufficient forecasting accuracy.The present study proposes a hybrid forecastingmethods to address this need.The proposed method includes three models.The first model is based on the autoregressive integrated moving average(ARIMA)statistical model;the second model is a back propagation neural network(BPNN)with adaptive slope and momentum parameters;and the thirdmodel is a hybridization between ARIMA and BPNN(ARIMA/BPNN)and artificial neural networks and ARIMA(ARIMA/ANN)to gain the benefits of linear and nonlinearmodeling.The forecasting models proposed in this study are used to predict the indices of the consumer price index(CPI),and predict the expected number of cancer patients in the Ibb Province in Yemen.Statistical standard measures used to evaluate the proposed method include(i)mean square error,(ii)mean absolute error,(iii)root mean square error,and(iv)mean absolute percentage error.Based on the computational results,the improvement rate of forecasting the CPI dataset was 5%,71%,and 4%for ARIMA/BPNN model,ARIMA/ANN model,and BPNN model respectively;while the result for cancer patients’dataset was 7%,200%,and 19%for ARIMA/BPNNmodel,ARIMA/ANN model,and BPNNmodel respectively.Therefore,it is obvious that the proposed method reduced the randomness degree,and the alterations affected the time series with data non-linearity.The ARIMA/ANN model outperformed each of its components when it was applied separately in terms of increasing the accuracy of forecasting and decreasing the overall errors of forecasting.展开更多
COVID-19 comes from a large family of viruses identied in 1965;to date,seven groups have been recorded which have been found to affect humans.In the healthcare industry,there is much evidence that Al or machine learni...COVID-19 comes from a large family of viruses identied in 1965;to date,seven groups have been recorded which have been found to affect humans.In the healthcare industry,there is much evidence that Al or machine learning algorithms can provide effective models that solve problems in order to predict conrmed cases,recovered cases,and deaths.Many researchers and scientists in the eld of machine learning are also involved in solving this dilemma,seeking to understand the patterns and characteristics of virus attacks,so scientists may make the right decisions and take specic actions.Furthermore,many models have been considered to predict the Coronavirus outbreak,such as the retro prediction model,pandemic Kaplan’s model,and the neural forecasting model.Other research has used the time series-dependent face book prophet model for COVID-19 prediction in India’s various countries.Thus,we proposed a prediction and analysis model to predict COVID-19 in Saudi Arabia.The time series dependent face book prophet model is used to t the data and provide future predictions.This study aimed to determine the pandemic prediction of COVID-19 in Saudi Arabia,using the Time Series Analysis to observe and predict the coronavirus pandemic’s spread daily or weekly.We found that the proposed model has a low ability to forecast the recovered cases of the COVID-19 dataset.In contrast,the proposed model of death cases has a high ability to forecast the COVID-19 dataset.Finally,obtaining more data could empower the model for further validation.展开更多
Building the prediction model(s) from the historical time series has attracted many researchers in last few decades. For example, the traders of hedge funds and experts in agriculture are demanding the precise models ...Building the prediction model(s) from the historical time series has attracted many researchers in last few decades. For example, the traders of hedge funds and experts in agriculture are demanding the precise models to make the prediction of the possible trends and cycles. Even though many statistical or machine learning (ML) models have been proposed, however, there are no universal solutions available to resolve such particular problem. In this paper, the powerful forward-backward non-linear filter and wavelet-based denoising method are introduced to remove the high level of noise embedded in financial time series. With the filtered time series, the statistical model known as autoregression is utilized to model the historical times aeries and make the prediction. The proposed models and approaches have been evaluated using the sample time series, and the experimental results have proved that the proposed approaches are able to make the precise prediction very efficiently and effectively.展开更多
A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorith...A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au...The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.展开更多
基金supported by Sichuan Natural Science Foundation (Grant No. 2023NSFSC0423)CNPC Innovation Found (Grant No. 2022DQ02-0207)+2 种基金Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202201510)supported by a grant from the Human Resources Development program (No. 20216110100070) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP)funded by the Ministry of Trade, Industry, and Energy of the Korean Government。
文摘Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challenges due to the complex law of decline, nonlinear and non-stationary features in production data, which greatly repair the robustness of current models in predicting shale gas production time series. To address these challenges and improve accuracy in production forecasting, this paper introduces a novel and innovative approach: a hybrid proxy model that combines the bidirectional long short-term memory(BiLSTM) neural network and random forest(RF) through deep learning. The BiLSTM neural network is adept at capturing long-term dependencies, making it suitable for understanding the intricate relationships between input and output variables in shale gas production.On the other hand, RF serves a dual purpose: reducing model variance and addressing the concept drift problem that arises in non-stationary time series predictions made by BiLSTM. By integrating these two models, the hybrid approach effectively captures the inherent dependencies present in long and nonstationary production time series, thereby reducing model uncertainty. Furthermore, the combination of BiLSTM and RF is optimized using the recently-proposed marine predators algorithm(MPA) to fine-tune hyperparameters and enhance the overall performance of the proxy model. The results demonstrate that the proposed BiLSTM-RF-MPA model achieves higher prediction accuracy and demonstrates stronger generalization capabilities by effectively handling the complex nonlinear and non-stationary characteristics of shale gas production time series. Compared to other models such as LSTM, BiLSTM, and RF, the proposed model exhibits superior fitting and prediction performance, with an average improvement in performance indicators exceeding 20%. This innovative framework provides valuable insights for forecasting the complex production performance of unconventional oil and gas reservoirs, which sheds light on the development of data-driven proxy models in the field of subsurface energy utilization.
基金This research was supported by the Ministry of Science and Technology of China,National Basic Research Program of China (Grant No.2010CB951504).The authors acknowledge support from the Flemish Interuniversity Council,the Ghent University Laboratory of Soil Science for the writing of this paper
文摘A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (10-year) environmental planning and decision making.
文摘Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran from 2011 to 2017.We used decomposition methods to explore seasonality and long-term trends and applied the Autoregressive Integrated Moving Average(ARIMA)model to fit a univariate time series of animal bite incidence.The ARIMA modeling process involved selecting the time series,transforming the series,selecting the appropriate model,estimating parameters,and forecasting.Results:Our results using the Box Jenkins model showed a significant seasonal trend and an overall increase in animal bite incidents during the study period.The best-fitting model for the available data was a seasonal ARIMA model with drift in the form of ARIMA(2,0,0)(1,1,1).This model can be used to forecast the frequency of animal attacks in northwest Iran over the next two years,suggesting that the incidence of animal attacks in the region would continue to increase during this time frame(2018-2019).Conclusion:Our findings suggest that time series analysis is a useful method for investigating animal bite cases and predicting future occurrences.The existence of a seasonal trend in animal bites can also aid in planning healthcare services during different seasons of the year.Therefore,our study highlights the importance of implementing proactive measures to address the growing issue of animal bites in Iran.
基金Project (Nos. 60174009 and 70071017) supported by the NationalNatural Science Foundation of China
文摘This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.
基金funded by the research-applied project of the Astronomical Institute of Uzbekistan (FA-A5-F014)
文摘This paper presents an option for modern dynamic terrestrial reference system realization in Uzbekistan for user needs. An additive model is explored to predict patterns of time series and investigate means of constructing forecast time series models in the future. The main components(trend, periodical, and irregular) of the KIUB(DORIS) and KIT3, TASH, MADK, and MTAL(GNSS) international stations coordinate time series were investigated. It was shown that seasonal nonlinear trends occurred both in the height(U) component of all stations and the east(E) component of high mountainous stations such as MTAL and MADK. The seasonal periodical portion of the time series determined from the additive model has a complicated pattern for all sites and can be explained as both hydrological signals in the region and improvement of observational quality. Amplitudes of the best-fitting sinusoids in the North component ranged between 1.73 and 8.76 mm; the East component ranged between 0.82 and 11.92 mm; and the Up component ranged between 3.11 and 40.81 mm. Regression analysis of the irregular portion of the height component of the two techniques at the Kitab station using tropospheric parameters(pressure and temperature) was confirmed as only 57% of the stochastic portion of the time series.
文摘In this study we establish the probability density function of the square transformed left-truncated N(1,σ2) error component of the multiplicative time series model and the functional expressions for its mean and variance. Furthermore the mean and variance of the square transformed left-truncated N(1,σ2) error component and those of the untransformed component were compared for the purpose of establishing the interval for σ where the properties of the two distributions are approximately the same in terms of equality of means and normality. From the results of the study, it was established that the two distributions are normally distributed and have means ≌1.0 correct to 1 dp in the interval 0 σ , hence a successful square transformation where necessary is achieved for values of σ such that 0 σ .
基金Construction of Guizhou breeding livestock and poultry genetic resources testing platform[QKZYD(2018)4015]Science and Technology Innovation Talent Team of Guizhou Province s Major Livestock and Poultry Genome Big Data Analysis and Application Research(QKHPTRC[2019]5615)Guizhou Provincial Poultry Industry Joint Research Project.
文摘Eggs,as a meat consumer product in China,are closely related to the vegetable basket project.Exploring and predicting the future trend of egg market price is of great significance for stabilizing egg price and market supply.In this study,the time series AR model was used for fitting the egg market prices in the 66 d from January 1 to March 7,2021,and the delay operator nlag18 was used for white noise test,giving pr>probability of chisq<0.005.The time series was not a white noise series,and then the stationary series was used for modeling.The optimal model was selected as the AR series(BIC(3,0)),and finally,the egg market price model AM was obtained as X_(t)=9.0556+(1+0.8926)ε_(t),which was the optimal model.The model showed that the egg price fluctuations in 2021 will be clustered,and the later price will be significantly affected by external factors in the previous period.The dynamic prediction results of the model showed that the egg price would stop falling in March 2020,and the egg price would continue to slow down in March.
文摘Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.
文摘In machine learning, selecting useful features and rejecting redundant features is the prerequisite for better modeling and prediction. In this paper, we first study representative feature selection methods based on correlation analysis, and demonstrate that they do not work well for time series though they can work well for static systems. Then, theoretical analysis for linear time series is carried out to show why they fail. Based on these observations, we propose a new correlation-based feature selection method. Our main idea is that the features highly correlated with progressive response while lowly correlated with other features should be selected, and for groups of selected features with similar residuals, the one with a smaller number of features should be selected. For linear and nonlinear time series, the proposed method yields high accuracy in both feature selection and feature rejection.
文摘In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical criterion for crack initiation was proposed.
基金Supported by the Shandong Natural Science Foundation(ZR2013BL008)
文摘This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.
文摘Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been developed for modeling and predicting time series. In the traditional exponential smoothing method, a fixed weight is assigned to data history, and the trend changes of time series are ignored. In this paper, an uncertainty reasoning method, based on cloud model, is employed in time series prediction, which uses cloud logic controller to adjust the smoothing coefficient of the simple exponential smoothing method dynamically to fit the current trend of the time series. The validity of this solution was proved by experiments on various data sets.
基金Supported by the Youth Project of Shaanxi University of Chinese Medicine(2015QN05)
文摘Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference information for JE control and prevention. Methods Theoretically epidemiologic study was employed in the research process. Monthly incidence data on JE for the period from Jan 2005 to Sep 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang, Shaanxi province. An optimal SARIMA model was developed for JE incidence from 2005 to 2013 with the Box and Jenkins approach. This SARIMA model could predict JE incidence for the year 2014 and 2015. Results SARIMA (1, 1, 1) (2, 1, 1)12 was considered to be the best model with the lowest Bayesian information criterion, Akaike information criterion, Mean Absolute Error values, the highest R2, and a lower Mean Absolute Percent Error. SARIMA (1, 1, 1) (2, 1, 1)12 was stationary and accurate for predicting JE incidence in Xianyang. The predicted incidence, around 0.3/100 000 from June to August in 2014 with low errors, was higher compared with the actual incidence. Therefore, SARIMA (1, 1, 1) (2, 1, 1)12 appeared to be reliable and accurate and could be applied to incidence prediction. Conclusions The proposed prediction model could provide clues to early identification of the JE incidence that is increased abnormally (≥0.4/100 000). According to the predicted results in 2014, the JE incidence in Xianyang will decline slightly and reach its peak from June to August.The authors wish to thank the staff from the CDCs from 13 counties of Xianyang, Shaanxi province, China, for their contribution to Japanese encephalitis cases reporting.
基金supported by the National Natural Science Foundation of China(61309022)
文摘Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy.
基金Researchers would like to thank the Deanship of Scientific Research,Qassim University for funding the publication of this project.
文摘Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is insufficient forecasting accuracy.The present study proposes a hybrid forecastingmethods to address this need.The proposed method includes three models.The first model is based on the autoregressive integrated moving average(ARIMA)statistical model;the second model is a back propagation neural network(BPNN)with adaptive slope and momentum parameters;and the thirdmodel is a hybridization between ARIMA and BPNN(ARIMA/BPNN)and artificial neural networks and ARIMA(ARIMA/ANN)to gain the benefits of linear and nonlinearmodeling.The forecasting models proposed in this study are used to predict the indices of the consumer price index(CPI),and predict the expected number of cancer patients in the Ibb Province in Yemen.Statistical standard measures used to evaluate the proposed method include(i)mean square error,(ii)mean absolute error,(iii)root mean square error,and(iv)mean absolute percentage error.Based on the computational results,the improvement rate of forecasting the CPI dataset was 5%,71%,and 4%for ARIMA/BPNN model,ARIMA/ANN model,and BPNN model respectively;while the result for cancer patients’dataset was 7%,200%,and 19%for ARIMA/BPNNmodel,ARIMA/ANN model,and BPNNmodel respectively.Therefore,it is obvious that the proposed method reduced the randomness degree,and the alterations affected the time series with data non-linearity.The ARIMA/ANN model outperformed each of its components when it was applied separately in terms of increasing the accuracy of forecasting and decreasing the overall errors of forecasting.
文摘COVID-19 comes from a large family of viruses identied in 1965;to date,seven groups have been recorded which have been found to affect humans.In the healthcare industry,there is much evidence that Al or machine learning algorithms can provide effective models that solve problems in order to predict conrmed cases,recovered cases,and deaths.Many researchers and scientists in the eld of machine learning are also involved in solving this dilemma,seeking to understand the patterns and characteristics of virus attacks,so scientists may make the right decisions and take specic actions.Furthermore,many models have been considered to predict the Coronavirus outbreak,such as the retro prediction model,pandemic Kaplan’s model,and the neural forecasting model.Other research has used the time series-dependent face book prophet model for COVID-19 prediction in India’s various countries.Thus,we proposed a prediction and analysis model to predict COVID-19 in Saudi Arabia.The time series dependent face book prophet model is used to t the data and provide future predictions.This study aimed to determine the pandemic prediction of COVID-19 in Saudi Arabia,using the Time Series Analysis to observe and predict the coronavirus pandemic’s spread daily or weekly.We found that the proposed model has a low ability to forecast the recovered cases of the COVID-19 dataset.In contrast,the proposed model of death cases has a high ability to forecast the COVID-19 dataset.Finally,obtaining more data could empower the model for further validation.
文摘Building the prediction model(s) from the historical time series has attracted many researchers in last few decades. For example, the traders of hedge funds and experts in agriculture are demanding the precise models to make the prediction of the possible trends and cycles. Even though many statistical or machine learning (ML) models have been proposed, however, there are no universal solutions available to resolve such particular problem. In this paper, the powerful forward-backward non-linear filter and wavelet-based denoising method are introduced to remove the high level of noise embedded in financial time series. With the filtered time series, the statistical model known as autoregression is utilized to model the historical times aeries and make the prediction. The proposed models and approaches have been evaluated using the sample time series, and the experimental results have proved that the proposed approaches are able to make the precise prediction very efficiently and effectively.
文摘A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
基金Supported by the National Natural Science Foundation of China under Grant No 60972106the China Postdoctoral Science Foundation under Grant No 2014M561053+1 种基金the Humanity and Social Science Foundation of Ministry of Education of China under Grant No 15YJA630108the Hebei Province Natural Science Foundation under Grant No E2016202341
文摘The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.