Large reservoirs have the risk of reservoir induced seismicity.Accurately detecting and locating microseismic events are crucial when studying reservoir earthquakes.Automatic earthquake monitoring in reservoir areas i...Large reservoirs have the risk of reservoir induced seismicity.Accurately detecting and locating microseismic events are crucial when studying reservoir earthquakes.Automatic earthquake monitoring in reservoir areas is one of the effective measures for earthquake disaster prevention and mitigation.In this study,we first applied the automatic location workflow(named LOCFLOW)to process 14-day continuous waveform data from several reservoir areas in different river basins of Guizhou province.Compared with the manual seismic catalog,the recall rate of seismic event detection using the workflow was 83.9%.Of the detected earthquakes,88.9%had an onset time difference below 1 s,81.8%has a deviation in epicenter location within 5 km,and 77.8%had a focal depth difference of less than 5 km,indicating that the workflow has good generalization capacity in reservoir areas.We further applied the workflow to retrospectively process continuous waveform data recorded from 2020 to the first half of 2021 in reservoir areas in multiple river basins of western Guizhou province and identified five times the number of seismic events obtained through manual processing.Compared with manual processing of seismic catalog,the completeness magnitude had decreased from 1.3 to 0.8,and a b-value of 1.25 was calculated for seismicity in western Guizhou province,consistent with the b-values obtained for the reservoir area in previous studies.Our results show that seismicity levels were relatively low around large reservoirs that were impounded over 15 years ago,and there is no significant correlation between the seismicity in these areas and reservoir impoundment.Seismicity patterns were notably different around two large reservoirs that were only impounded about 12 years ago,which may be explained by differences in reservoir storage capacity,the geologic and tectonic settings,hydrogeological characteristics,and active fault the reservoir areas.Prominent seismicity persisted around two large reservoirs that have been impounded for less than 10 years.These events were clustered and had relatively shallow focal depths.The impoundment of the Jiayan Reservoir had not officially begun during this study period,but earthquake location results suggested a high seismicity level in this reservoir area.Therefore,any seismicity in this reservoir area after the official impoundment deserves special attention.展开更多
The Three Gorges Project(TGP) on the Yangtze River(YR) is the largest water power station in the world;it is now attracting the worldwide attention. Possessing comprehensive utilization benefits mainly for flood contr...The Three Gorges Project(TGP) on the Yangtze River(YR) is the largest water power station in the world;it is now attracting the worldwide attention. Possessing comprehensive utilization benefits mainly for flood control,power generation and navigation improvement,TGP will be a vital and backbone project in harnessing and developing of the YR. TGP has been commenced in 1993,the main channel of Yangtze was diverted on Nov.8th,1997 and whole project was completed in 2009. The Three Gorges(TG) reservoir has been formed since June 2003 and impounded to 175 m on Oct.26th,2010. The reservoir has a total length of 660 km and an average width of 1.0-1.5 km,with a total waters area of 1048 km2. In pace with the raised pool level,the enlargedstorage,the probability of reservoir earthquake would be enlarged. According to the magnitude records of historical maximum earthquake and properly weighted,defined the maximum reliable earthquake of TG reservoir would be ML6 magnitude,existed the probability of ML 5.0-5.8 induced earthquake around the Xiannvshan and Jiuwanxi fault zone(18 km upstream of the dam) . However,the highest intensity around the dam site would not exceed Degree VI,whereas the main structures of TGP were designed with an anti-seismic intensity of Degree VII,hence the reservoir induced earthquake would not form direct threat to the main structures of TGP. After the impoundment and operation of TG reservoir,the frequency and intensity of earthquake has been increased in some extent,yet the earthquake activities at TG region still kept in an original weak earthquake activities status. We should strengthen the TG reservoir induced earthquake monitoring and forecast,prevent the earthquake and geological calamity,ensure the safety of dam construction and operation,form the harmonious society as well as guarantee the long term security. This paper explained the mechanism,kinds,causes,development and calamities of the earthquakes in the world,collected a lot of TGP,China and World's earthquake and geology materials. Such as 105 year(Jan.1906-June2011) earthquake records in the world(Tab.1) ,13 main reservoir induced earthquake records in China(Tab. 2) ,19 main reservoir induced earthquake records in the world(Tab.3) ,14 year(1996-2009) reservoir earthquake monitoring records in TGP(Tab.4) . Analyzed the cause,calamities of the main earthquakes as well as its alarm and forecast. May it provide reference for readers and beg your guide.展开更多
The proposed hydroelectric project on the Yangtze Gorges will be one of the largest power stations in the world.The problem of induced seismicity to the project has attracted much attention throughout China and the wo...The proposed hydroelectric project on the Yangtze Gorges will be one of the largest power stations in the world.The problem of induced seismicity to the project has attracted much attention throughout China and the world.A research program has been carried out by the State Seismological Bureau of China.Based on the size of the reservoir and the lithology,geological structure,permeability,stress state,and previous seismicity in the region,the potential risk of reservoir-induced seismicity has been estimated.The results suggest that,after impoundment in the reservoir area,the possibility of induced seismicity cannot be completely ruled out.The areas with potential risk may be in some gorges composed of karstified carbonate and plutonic granite around the dam site.However,the magnitude is expected to be limited owing to the small dimension of the induced seismogenic faults.展开更多
Some recent publications presented a result suggesting that Zipingpu reservoir hastened the occurrence of the 2008 Ms8.0 Wenchuan earthquake by tens to hundreds of years. Their researches calculated the Coulomb stress...Some recent publications presented a result suggesting that Zipingpu reservoir hastened the occurrence of the 2008 Ms8.0 Wenchuan earthquake by tens to hundreds of years. Their researches calculated the Coulomb stress change induced by Zipingpu reservoir on the rupturing fault of Wenchuan earthquake. Their results, however, are critically dependent upon the 3-D event location, reservoir location, and the fault plane orientation. We repeated Ge et al.'s work in this paper and found that an improper dip angle parameter of their 2-D fault model might lead to a wrong conclusion. Both the modeling results based on the 2-D model and 3-D model with proper fault parameters will show Coulomb stress changes alone were neither large enough nor had the correct orientation to affect the occurrence of Wenchuan earthquake, which supports our recent argument based on the local seismicity analysis and the induced Coulomb stress change calculation with a 3-D model.展开更多
Research has been conducted on reservoir-induced earthquakes in China since the Xinfengjiang reservoir-induced earthquakes in the 1960s.Regulations now require the risk of reservoir-induced earthquakes to be evaluated...Research has been conducted on reservoir-induced earthquakes in China since the Xinfengjiang reservoir-induced earthquakes in the 1960s.Regulations now require the risk of reservoir-induced earthquakes to be evaluated in the pre-research stage of all hydropower projects.Although nearly 40 cases of reservoir-induced earthquakes have been reported in China,analyses comparing the changes in seismic activity following reservoir impoundment with predictions are rare.In this study,we compared seismic activities observed in the reservoir area before and after the impoundment of the Xiluodu hydropower station in terms of the spatial distribution,frequency,and focal depths of the earthquakes,and clarified the correlation between their frequency/timing and reservoir level after impoundment.We then concluded that the seismic events in the head region were karst-type earthquakes,while those in the second segment of the reservoir were tectonic earthquakes.The spatial distribution of the earthquake epicenters and the seismic intensities validated some of the results for the reservoir-induced seismic risk assessment for the Xiluodu hydropower station,indicating that the proposed earthquake triggers and predictive models are reasonable.This study can provide a valuable reference for investigating the mechanism(s)of reservoir-induced earthquakes,revising reservoir-induced earthquake hazard assessment codes,and predicting the hazard zones of reservoir-induced seismicity under similar conditions.展开更多
Using the data of P-wave network and Zhejiang and travel time recorded at the Shanxi-reservoir seismological Fujian local networks, we implemented a simultaneous inversion of earthquake relocation and velocity struct...Using the data of P-wave network and Zhejiang and travel time recorded at the Shanxi-reservoir seismological Fujian local networks, we implemented a simultaneous inversion of earthquake relocation and velocity structure and determined the new locations of earthquakes in the Shanxi-reservoir. The results show that: (1) the overall epicenter distribution is NW directed, and the Shanxi reservoir induced seismicity has a close relationship to the Shuangxi-Jiaoxiyang fault; (2) the focal depth of the Shanxi reservoir induced seismicity is 5.4km in average, less than the average focal depth in the South China earthquake zone; (3) the focal depth is shallower on the reservoir shore and deeper in the reservoir inundation area. At the beginning of the reservoir induced seismicity, the focal depth increased gradually. This may be due to the gradual penetration of water into a larger depth that induced deeper earthquakes; and (4) there is a low P-wave velocity anomaly in the study area, located at the intersection of multiple faults in the reservoir inundation area. The Shanxi reservoir induced seismicity mostly occurred in this lowvelocity anomaly zone. This may be related to water penetration.展开更多
Seismotectonics in the Three Gorges reservoir area is investigated by using the P-wave tomography with earthquakes that occurred before the impoundment of the reservoir. The result indicates that most of these events ...Seismotectonics in the Three Gorges reservoir area is investigated by using the P-wave tomography with earthquakes that occurred before the impoundment of the reservoir. The result indicates that most of these events occurred in or around the velocity-gradient belts between high-velocity and low-velocity anomalies. These belts have similar characteristics to buried-fauh zones. Stresses generated by movement of partially molten upper-mantle materials and thermal stress may have jointly contributed to the seismic activities along the faults and such buried faults, and possibly activated new earthquake ruptures.展开更多
Complete records of more than 3,000 earthquake events in the Shanxi, Wenzhou reservoir earthquake sequence were recorded from August to November,2014 by the high-density,high-resolution monitoring stations of the Zhej...Complete records of more than 3,000 earthquake events in the Shanxi, Wenzhou reservoir earthquake sequence were recorded from August to November,2014 by the high-density,high-resolution monitoring stations of the Zhejiang Regional Digital Seismic Network and the reservoir earthquake monitoring network,with a maximum magnitude of M4. 2. Based on 3-D epicenter location, focal mechanism solutions, and in combination with the geological and tectonic characteristics of the reservoir area,the earthquake sequence is discussed in this paper. The linear fitting of the Hypo SAT location results show that the main shock occurred in the NW trending fault and the earthquake sequence is concentrated in bands along the active faults,with a strike of305 °,dipping SW with dip angle of 85 °. By using P-wave first motion symbols, we obtained the average focal mechanism of M ≥ 3. 5 earthquakes,with a strike 308 ° and dip 84 ° for nodal plane II. The field geological survey and research show that the strike,dip and rake of nodal plane II are roughly consistent with the occurrence of the Shuangxi-Jiaoxi fault. The comprehensive analysis reveals that the NW-trending Shuangxi-Jiaoxi fault is the seismogenic structure of the earthquakes.展开更多
In this paper, the theory of the load/unload response ratio is applied to the prediction of the reservoir-induced earthquakes, and variation of the load/unload response ratio Y preceding the occurrence of main shocks ...In this paper, the theory of the load/unload response ratio is applied to the prediction of the reservoir-induced earthquakes, and variation of the load/unload response ratio Y preceding the occurrence of main shocks of the reservoir-induced earthquakes in Xinfengjiang, Foziling, Danjiangkou, and Shenwo. The results show that the load/unload response ratio Y rises evidently prior to the main shocks.展开更多
The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for...The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. /展开更多
An earthquake cluster occurred in the Shanxi reservoir, located around Wenzhou city in Zbejiang Province. From February 4 to February 11, 2006, 9 earthquakes with ML ≥ 4.0 occurred, and the greatest magnitude was ML4...An earthquake cluster occurred in the Shanxi reservoir, located around Wenzhou city in Zbejiang Province. From February 4 to February 11, 2006, 9 earthquakes with ML ≥ 4.0 occurred, and the greatest magnitude was ML4.6. The correlations of earthquake occurrence time with reservoir level changes and tides are discussed, and the possible factors that induced the reservoir earthquakes and the trend of seismic activity are analyzed based on the characteristics of earthquake occurrence time. Finally, we suggest that it is necessary to slow down the speed of storing water and to maintain a level below the highest historical level to avoid greater earthquakes in the reservoir.展开更多
Based on the digital seismic waveform data observed from regional and reservoir seismic networks,the seismicity and source parameters in the Zipingpu reservoir area from January 1,2000 to May 11,2008 before the Wenchu...Based on the digital seismic waveform data observed from regional and reservoir seismic networks,the seismicity and source parameters in the Zipingpu reservoir area from January 1,2000 to May 11,2008 before the Wenchuan MS8.0 earthquake are studied. The analysis shows a continuous activity of small earthquakes before the Wenchuan MS8. 0 earthquake. The level of seismic activity was from ML2.0 to ML3.0 in recent years. The impoundment of Zipingpu reservoir started in September 2005 and the obvious increment of seismic activities occurred in February 2008,but according to the analysis of the longer time series,the frequency and intensity of seismic activities do not exceed its range,which means it is still a fluctuation of regional seismic activities or tectonic activity. At the same time,we also studied the spatio-temporal distribution and the change of apparent stress difference in the source region before the great earthquake,and the results show that the apparent stress values of small earthquakes are generally higher than fitted values of apparent stress in the reservoir area in the nearly three months before the Wenchuan MS8.0 earthquake. It can be seen from the spatial distribution of apparent stress difference,that the epicenter of the earthquake is located at a low stress distribution area,and the relatively high apparent stress difference is at the east of the epicenter. Apparent stress increment occurred in local areas.展开更多
We showed the relation between the magnitude of induced earthquake and the reservoir storage and dam height based on the global catalog from 1967 to 1989 compiled by Ding Yuanzhang(1989).By multiplying reservoir stora...We showed the relation between the magnitude of induced earthquake and the reservoir storage and dam height based on the global catalog from 1967 to 1989 compiled by Ding Yuanzhang(1989).By multiplying reservoir storage with dam height,we introduced a new parameter named E_E.We found that the cases with specific E_E and magnitude do not exceed a limit.Based on the discussion of its physics,we called E_E the equivalent energy.We considered this limit as the upper limit of magnitude for reservoir-induced earthquakes.The result was proved by the recent cases occurring in China.This size limitation can be used as a helpful consideration for reservoir design.展开更多
The Shanxi reservoir earthquakes are significant seismic events in southern Zhejiang Province in recent years, an area with fewer and weaker earthquakes. The seismicity showed an intermittent characteristic and group ...The Shanxi reservoir earthquakes are significant seismic events in southern Zhejiang Province in recent years, an area with fewer and weaker earthquakes. The seismicity showed an intermittent characteristic and group distribution. The epicenters located by the seismic network did not show a predominant direction and the seismogenic structure is not clear. In the study, the nonlinear imaginary wave travel time equation was linearized and solved, and the source position, initial imaginary velocity and travel time residuals were obtained. Then by doubling the standard deviation as time residuals, the maximum error generated from longitude, latitude, depth and imaginary velocity was calculated. The genetic population was structured using the maximum error and the end result of earthquake location was obtained by genetic algorithm. The result of relocation of the Shanxi reservoir earthquakes with this method shows that earthquakes are largely concentrated on a near-vertical, northwest oriented fault plane, and the included angles between the normal of the plane and the due north, due east and vertical directions are 46~, 44~, and 87~, respectively. The result is in agreement with that of comprehensive fault plane solutions of small earthquakes. The average depth of the earthquakes was 4.7km, the maximum depth 9.5kin, and the minimum depth 1.7km. The epicenters showed a northwestward narrow banded distribution, and the focal depth increased along the northwest direction. There was a discontinuous seismic gap of about 3.5km long at the northwest end of the strip. The characteristics of source parameters obtained by using the Borun model were not significantly different from that of tectonic earthquakes. Seismic stress drop was about 0.33MPa, and the average stress drop was 0.88MPa. According to the stress drop' spatial distribution, the seismic discontinuities segment at the northwest end of the strip is in a low stress drop zone.展开更多
815 earthquakes recorded by 12 seismic stations of the Zipingpu reservoir seismic network in 2009 were relocated using the double difference algorithm to analyze the seismic activity of the Zipingpu reservoir.Relocati...815 earthquakes recorded by 12 seismic stations of the Zipingpu reservoir seismic network in 2009 were relocated using the double difference algorithm to analyze the seismic activity of the Zipingpu reservoir.Relocation results show that the earthquakes are concentrated relatively in three zones.The distribution characteristics of focal depth are obviously different among different concentration zones.This means earthquakes in different concentration zones may have different causes.Compared to relocation of earthquakes taking place before the Wenchuan earthquake done by other researchers,the seismic concentration zones in the reservoir area shifted obviously after the Wenchuan earthquake.These variations are related to local stress adjustment in the reservoir area and may also be related to the diffusion depth and range of increased pore pressure caused by rock failure in the course of Wenchuan earthquake.展开更多
In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservo...In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservoir area in the section of Hubei Province in March 2009 (21 short-period seismographs, 5 broadband digital seismographs). From March to December, 2009, a total of 2,995 ML -0. 8 - 2. 9 earthquakes were detected during the trial impounding of the Three Gorges Reservoir ( water level rose from 145 m to 172.8m). Using the double difference earthquake location algorithm, 2,837 earthquakes were precisely re-located. The results show that the pattern of small local earthquake swarms in the Three Gorges Reservoir area took on a linear distribution or mass-like cluster distribution, the mass-like clusters of events were generally within a distance of 5 km from waterfront, and the linear distribution of the earthquakes could be extended to a distance of 16 km away from the waterfront. In the Hubei section of the Three Gorges Reservoir, earthquakes were mainly concentrated in the northern end of the Xiannvshan and Jiuwanxi faults near the Xiangxihe River, and along the banks of the Yangtze River at the west of Xietan township and the Shenlongxi area on the northern bank in the Badong region, with focal depths less than 10km, and 4km in average. Earthquake frequency in the reservoir region had a positive correlation with reservoir water level fluctuations, indicating that the seismicity belongs to reservoir induced earthquakes. Along the Shenlong River in the reservoir area, earthquakes showed three linear distributions in the northern Badong county, and distributed according to Karst distribution. There are underground rivers in the carbonate strata. When the reservoir was impounded, water permeated into the underground rivers, thus inducing earthquakes. Earthquakes in the areas on the crossriver segment of Xiannvshan fault, the Jiuwanxi fault and at the areas west of Xietan, Shazhen and Xizhen, may be related to the softening of discontinuities, such as the Nukou fault, the Xiannvshan fault, or the bedding joints, which would lead to failure of rock masses, thus, inducing earthquakes. However, convincing conclusions about the triggering mechanism still need further study. Additionally, near the areas south of Wenhua and Yanglin of Zigui county and at Rangkou town east of Badong county, mininginduced earthquakes occurred at the mines nearby, and on the shores of the reservoir are some collapse earthquakes.展开更多
Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and densit...Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.展开更多
The Three-Gorge Water Conservancy Project on the Yangtze River started to impound water by locking gates on June 1, 2003. A swarm of more than 2000 small earthquakes suddenly occurred densely along the river section i...The Three-Gorge Water Conservancy Project on the Yangtze River started to impound water by locking gates on June 1, 2003. A swarm of more than 2000 small earthquakes suddenly occurred densely along the river section in Xinling Town north of Badong, Hubei Province, on June 7. This caused grave concern in the following years, but, with the completion of the second- and third-phase engineering construction, the water level in the reservoir will rise up to 156 m and 175 m respectively, no matter whether it can induce larger and stronger earthquakes. After an analysis of the distribution of active faults in the eastern part of the reservoir area, their intersections and capability to generate earthquakes from a seismo-tectonic viewpoint, we consider that after the reservoir impounding, two potential focal zones existing in Badong and Zigui counties may generate M 5.5 earthquake, the seismic intensity of which may reach Ⅷ. It will induce landslide bodies in the reservoir area to be reactivated and slide. The evidence is the large-scale landslide occurring on the Shazhenxi Creek river in Zigui County on June 12, 2003.展开更多
This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fl...This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.展开更多
This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are brie...This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are briefly described. Lessons learned related to dam safety from this devastating earthquake are preliminarily drawn. As the seismic safety of high dams during strong earthquakes has gained more attention around the world, some critical issues related to dam construction in China are considered and extensively discussed. Questions such as "Why is dam construction necessary in earthquake prone countries such as China?", "Can we accurately evaluate the seismic safety of high dams in China?", "Did reservoir impounding of the Zipingpu and Three Gorges Projects trigger the Wenchuan Earthquake in some way?" and "What is the strategic priority of dam safety for large dams in China?" are discussed. Finally, the corresponding tactics with response to the challenge are suggested and recent preliminary progress mainly achieved in IWHR is briefly introduced.展开更多
基金the Science and Technology Project of Power Construction Corporation of China Ltd.(No.DJ-ZDXM-2020-55).
文摘Large reservoirs have the risk of reservoir induced seismicity.Accurately detecting and locating microseismic events are crucial when studying reservoir earthquakes.Automatic earthquake monitoring in reservoir areas is one of the effective measures for earthquake disaster prevention and mitigation.In this study,we first applied the automatic location workflow(named LOCFLOW)to process 14-day continuous waveform data from several reservoir areas in different river basins of Guizhou province.Compared with the manual seismic catalog,the recall rate of seismic event detection using the workflow was 83.9%.Of the detected earthquakes,88.9%had an onset time difference below 1 s,81.8%has a deviation in epicenter location within 5 km,and 77.8%had a focal depth difference of less than 5 km,indicating that the workflow has good generalization capacity in reservoir areas.We further applied the workflow to retrospectively process continuous waveform data recorded from 2020 to the first half of 2021 in reservoir areas in multiple river basins of western Guizhou province and identified five times the number of seismic events obtained through manual processing.Compared with manual processing of seismic catalog,the completeness magnitude had decreased from 1.3 to 0.8,and a b-value of 1.25 was calculated for seismicity in western Guizhou province,consistent with the b-values obtained for the reservoir area in previous studies.Our results show that seismicity levels were relatively low around large reservoirs that were impounded over 15 years ago,and there is no significant correlation between the seismicity in these areas and reservoir impoundment.Seismicity patterns were notably different around two large reservoirs that were only impounded about 12 years ago,which may be explained by differences in reservoir storage capacity,the geologic and tectonic settings,hydrogeological characteristics,and active fault the reservoir areas.Prominent seismicity persisted around two large reservoirs that have been impounded for less than 10 years.These events were clustered and had relatively shallow focal depths.The impoundment of the Jiayan Reservoir had not officially begun during this study period,but earthquake location results suggested a high seismicity level in this reservoir area.Therefore,any seismicity in this reservoir area after the official impoundment deserves special attention.
文摘The Three Gorges Project(TGP) on the Yangtze River(YR) is the largest water power station in the world;it is now attracting the worldwide attention. Possessing comprehensive utilization benefits mainly for flood control,power generation and navigation improvement,TGP will be a vital and backbone project in harnessing and developing of the YR. TGP has been commenced in 1993,the main channel of Yangtze was diverted on Nov.8th,1997 and whole project was completed in 2009. The Three Gorges(TG) reservoir has been formed since June 2003 and impounded to 175 m on Oct.26th,2010. The reservoir has a total length of 660 km and an average width of 1.0-1.5 km,with a total waters area of 1048 km2. In pace with the raised pool level,the enlargedstorage,the probability of reservoir earthquake would be enlarged. According to the magnitude records of historical maximum earthquake and properly weighted,defined the maximum reliable earthquake of TG reservoir would be ML6 magnitude,existed the probability of ML 5.0-5.8 induced earthquake around the Xiannvshan and Jiuwanxi fault zone(18 km upstream of the dam) . However,the highest intensity around the dam site would not exceed Degree VI,whereas the main structures of TGP were designed with an anti-seismic intensity of Degree VII,hence the reservoir induced earthquake would not form direct threat to the main structures of TGP. After the impoundment and operation of TG reservoir,the frequency and intensity of earthquake has been increased in some extent,yet the earthquake activities at TG region still kept in an original weak earthquake activities status. We should strengthen the TG reservoir induced earthquake monitoring and forecast,prevent the earthquake and geological calamity,ensure the safety of dam construction and operation,form the harmonious society as well as guarantee the long term security. This paper explained the mechanism,kinds,causes,development and calamities of the earthquakes in the world,collected a lot of TGP,China and World's earthquake and geology materials. Such as 105 year(Jan.1906-June2011) earthquake records in the world(Tab.1) ,13 main reservoir induced earthquake records in China(Tab. 2) ,19 main reservoir induced earthquake records in the world(Tab.3) ,14 year(1996-2009) reservoir earthquake monitoring records in TGP(Tab.4) . Analyzed the cause,calamities of the main earthquakes as well as its alarm and forecast. May it provide reference for readers and beg your guide.
文摘The proposed hydroelectric project on the Yangtze Gorges will be one of the largest power stations in the world.The problem of induced seismicity to the project has attracted much attention throughout China and the world.A research program has been carried out by the State Seismological Bureau of China.Based on the size of the reservoir and the lithology,geological structure,permeability,stress state,and previous seismicity in the region,the potential risk of reservoir-induced seismicity has been estimated.The results suggest that,after impoundment in the reservoir area,the possibility of induced seismicity cannot be completely ruled out.The areas with potential risk may be in some gorges composed of karstified carbonate and plutonic granite around the dam site.However,the magnitude is expected to be limited owing to the small dimension of the induced seismogenic faults.
基金funded by the Key project of Chinese National Science and Technology(granted No.40821062)National Natural science foundation of China(granted Nos.40574013 and 40821062)
文摘Some recent publications presented a result suggesting that Zipingpu reservoir hastened the occurrence of the 2008 Ms8.0 Wenchuan earthquake by tens to hundreds of years. Their researches calculated the Coulomb stress change induced by Zipingpu reservoir on the rupturing fault of Wenchuan earthquake. Their results, however, are critically dependent upon the 3-D event location, reservoir location, and the fault plane orientation. We repeated Ge et al.'s work in this paper and found that an improper dip angle parameter of their 2-D fault model might lead to a wrong conclusion. Both the modeling results based on the 2-D model and 3-D model with proper fault parameters will show Coulomb stress changes alone were neither large enough nor had the correct orientation to affect the occurrence of Wenchuan earthquake, which supports our recent argument based on the local seismicity analysis and the induced Coulomb stress change calculation with a 3-D model.
基金supported by the China Three Gorges Construction Engineering Corporation(No.JG/20022B)National Key R&D Program of China(No.2017YFC0404901)。
文摘Research has been conducted on reservoir-induced earthquakes in China since the Xinfengjiang reservoir-induced earthquakes in the 1960s.Regulations now require the risk of reservoir-induced earthquakes to be evaluated in the pre-research stage of all hydropower projects.Although nearly 40 cases of reservoir-induced earthquakes have been reported in China,analyses comparing the changes in seismic activity following reservoir impoundment with predictions are rare.In this study,we compared seismic activities observed in the reservoir area before and after the impoundment of the Xiluodu hydropower station in terms of the spatial distribution,frequency,and focal depths of the earthquakes,and clarified the correlation between their frequency/timing and reservoir level after impoundment.We then concluded that the seismic events in the head region were karst-type earthquakes,while those in the second segment of the reservoir were tectonic earthquakes.The spatial distribution of the earthquake epicenters and the seismic intensities validated some of the results for the reservoir-induced seismic risk assessment for the Xiluodu hydropower station,indicating that the proposed earthquake triggers and predictive models are reasonable.This study can provide a valuable reference for investigating the mechanism(s)of reservoir-induced earthquakes,revising reservoir-induced earthquake hazard assessment codes,and predicting the hazard zones of reservoir-induced seismicity under similar conditions.
基金supported by the National Key Technology R&D Program(2008BAC38B03-01-05)the Earthquake Scientific Research Project(200708020),China
文摘Using the data of P-wave network and Zhejiang and travel time recorded at the Shanxi-reservoir seismological Fujian local networks, we implemented a simultaneous inversion of earthquake relocation and velocity structure and determined the new locations of earthquakes in the Shanxi-reservoir. The results show that: (1) the overall epicenter distribution is NW directed, and the Shanxi reservoir induced seismicity has a close relationship to the Shuangxi-Jiaoxiyang fault; (2) the focal depth of the Shanxi reservoir induced seismicity is 5.4km in average, less than the average focal depth in the South China earthquake zone; (3) the focal depth is shallower on the reservoir shore and deeper in the reservoir inundation area. At the beginning of the reservoir induced seismicity, the focal depth increased gradually. This may be due to the gradual penetration of water into a larger depth that induced deeper earthquakes; and (4) there is a low P-wave velocity anomaly in the study area, located at the intersection of multiple faults in the reservoir inundation area. The Shanxi reservoir induced seismicity mostly occurred in this lowvelocity anomaly zone. This may be related to water penetration.
基金supported by the National Natural Science Foundation of China( 40574039)National Science and Technology Key Project of China( 2008BAC38B02)
文摘Seismotectonics in the Three Gorges reservoir area is investigated by using the P-wave tomography with earthquakes that occurred before the impoundment of the reservoir. The result indicates that most of these events occurred in or around the velocity-gradient belts between high-velocity and low-velocity anomalies. These belts have similar characteristics to buried-fauh zones. Stresses generated by movement of partially molten upper-mantle materials and thermal stress may have jointly contributed to the seismic activities along the faults and such buried faults, and possibly activated new earthquake ruptures.
基金supported by the Science and Technology Project of Zhejiang Province(2012 C33079)the Youth Backbone Training Project of the Zhejiang Digital Seismic Natwork(20130207)
文摘Complete records of more than 3,000 earthquake events in the Shanxi, Wenzhou reservoir earthquake sequence were recorded from August to November,2014 by the high-density,high-resolution monitoring stations of the Zhejiang Regional Digital Seismic Network and the reservoir earthquake monitoring network,with a maximum magnitude of M4. 2. Based on 3-D epicenter location, focal mechanism solutions, and in combination with the geological and tectonic characteristics of the reservoir area,the earthquake sequence is discussed in this paper. The linear fitting of the Hypo SAT location results show that the main shock occurred in the NW trending fault and the earthquake sequence is concentrated in bands along the active faults,with a strike of305 °,dipping SW with dip angle of 85 °. By using P-wave first motion symbols, we obtained the average focal mechanism of M ≥ 3. 5 earthquakes,with a strike 308 ° and dip 84 ° for nodal plane II. The field geological survey and research show that the strike,dip and rake of nodal plane II are roughly consistent with the occurrence of the Shuangxi-Jiaoxi fault. The comprehensive analysis reveals that the NW-trending Shuangxi-Jiaoxi fault is the seismogenic structure of the earthquakes.
基金This project was sponsored by the Joint Earthquake Science Function and Natural Science Function, China.
文摘In this paper, the theory of the load/unload response ratio is applied to the prediction of the reservoir-induced earthquakes, and variation of the load/unload response ratio Y preceding the occurrence of main shocks of the reservoir-induced earthquakes in Xinfengjiang, Foziling, Danjiangkou, and Shenwo. The results show that the load/unload response ratio Y rises evidently prior to the main shocks.
文摘The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. /
基金This research was funded by the Joint Earthquake ScienceFoundation,China (104103)
文摘An earthquake cluster occurred in the Shanxi reservoir, located around Wenzhou city in Zbejiang Province. From February 4 to February 11, 2006, 9 earthquakes with ML ≥ 4.0 occurred, and the greatest magnitude was ML4.6. The correlations of earthquake occurrence time with reservoir level changes and tides are discussed, and the possible factors that induced the reservoir earthquakes and the trend of seismic activity are analyzed based on the characteristics of earthquake occurrence time. Finally, we suggest that it is necessary to slow down the speed of storing water and to maintain a level below the highest historical level to avoid greater earthquakes in the reservoir.
基金sponsored by the research project on reservoir earthquake monitoring and prediction technique (2008BAC38B03-02),China
文摘Based on the digital seismic waveform data observed from regional and reservoir seismic networks,the seismicity and source parameters in the Zipingpu reservoir area from January 1,2000 to May 11,2008 before the Wenchuan MS8.0 earthquake are studied. The analysis shows a continuous activity of small earthquakes before the Wenchuan MS8. 0 earthquake. The level of seismic activity was from ML2.0 to ML3.0 in recent years. The impoundment of Zipingpu reservoir started in September 2005 and the obvious increment of seismic activities occurred in February 2008,but according to the analysis of the longer time series,the frequency and intensity of seismic activities do not exceed its range,which means it is still a fluctuation of regional seismic activities or tectonic activity. At the same time,we also studied the spatio-temporal distribution and the change of apparent stress difference in the source region before the great earthquake,and the results show that the apparent stress values of small earthquakes are generally higher than fitted values of apparent stress in the reservoir area in the nearly three months before the Wenchuan MS8.0 earthquake. It can be seen from the spatial distribution of apparent stress difference,that the epicenter of the earthquake is located at a low stress distribution area,and the relatively high apparent stress difference is at the east of the epicenter. Apparent stress increment occurred in local areas.
文摘We showed the relation between the magnitude of induced earthquake and the reservoir storage and dam height based on the global catalog from 1967 to 1989 compiled by Ding Yuanzhang(1989).By multiplying reservoir storage with dam height,we introduced a new parameter named E_E.We found that the cases with specific E_E and magnitude do not exceed a limit.Based on the discussion of its physics,we called E_E the equivalent energy.We considered this limit as the upper limit of magnitude for reservoir-induced earthquakes.The result was proved by the recent cases occurring in China.This size limitation can be used as a helpful consideration for reservoir design.
基金supported by the Science andTechnology Project of Zhejiang Province(2007C330060)the Special Research Fund for Seismic Industry of China Seismological Bureau(200808068)
文摘The Shanxi reservoir earthquakes are significant seismic events in southern Zhejiang Province in recent years, an area with fewer and weaker earthquakes. The seismicity showed an intermittent characteristic and group distribution. The epicenters located by the seismic network did not show a predominant direction and the seismogenic structure is not clear. In the study, the nonlinear imaginary wave travel time equation was linearized and solved, and the source position, initial imaginary velocity and travel time residuals were obtained. Then by doubling the standard deviation as time residuals, the maximum error generated from longitude, latitude, depth and imaginary velocity was calculated. The genetic population was structured using the maximum error and the end result of earthquake location was obtained by genetic algorithm. The result of relocation of the Shanxi reservoir earthquakes with this method shows that earthquakes are largely concentrated on a near-vertical, northwest oriented fault plane, and the included angles between the normal of the plane and the due north, due east and vertical directions are 46~, 44~, and 87~, respectively. The result is in agreement with that of comprehensive fault plane solutions of small earthquakes. The average depth of the earthquakes was 4.7km, the maximum depth 9.5kin, and the minimum depth 1.7km. The epicenters showed a northwestward narrow banded distribution, and the focal depth increased along the northwest direction. There was a discontinuous seismic gap of about 3.5km long at the northwest end of the strip. The characteristics of source parameters obtained by using the Borun model were not significantly different from that of tectonic earthquakes. Seismic stress drop was about 0.33MPa, and the average stress drop was 0.88MPa. According to the stress drop' spatial distribution, the seismic discontinuities segment at the northwest end of the strip is in a low stress drop zone.
基金funded jointly by National Science& Technology Pillar Program (Grant No. 2008BAC38B0401)special fund for basic scientific research of Institute of Geology,CEA (DF-IGCEA060828)
文摘815 earthquakes recorded by 12 seismic stations of the Zipingpu reservoir seismic network in 2009 were relocated using the double difference algorithm to analyze the seismic activity of the Zipingpu reservoir.Relocation results show that the earthquakes are concentrated relatively in three zones.The distribution characteristics of focal depth are obviously different among different concentration zones.This means earthquakes in different concentration zones may have different causes.Compared to relocation of earthquakes taking place before the Wenchuan earthquake done by other researchers,the seismic concentration zones in the reservoir area shifted obviously after the Wenchuan earthquake.These variations are related to local stress adjustment in the reservoir area and may also be related to the diffusion depth and range of increased pore pressure caused by rock failure in the course of Wenchuan earthquake.
基金sponsored by the National Key Technology R&D Program (2008BAC38B04),China
文摘In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservoir area in the section of Hubei Province in March 2009 (21 short-period seismographs, 5 broadband digital seismographs). From March to December, 2009, a total of 2,995 ML -0. 8 - 2. 9 earthquakes were detected during the trial impounding of the Three Gorges Reservoir ( water level rose from 145 m to 172.8m). Using the double difference earthquake location algorithm, 2,837 earthquakes were precisely re-located. The results show that the pattern of small local earthquake swarms in the Three Gorges Reservoir area took on a linear distribution or mass-like cluster distribution, the mass-like clusters of events were generally within a distance of 5 km from waterfront, and the linear distribution of the earthquakes could be extended to a distance of 16 km away from the waterfront. In the Hubei section of the Three Gorges Reservoir, earthquakes were mainly concentrated in the northern end of the Xiannvshan and Jiuwanxi faults near the Xiangxihe River, and along the banks of the Yangtze River at the west of Xietan township and the Shenlongxi area on the northern bank in the Badong region, with focal depths less than 10km, and 4km in average. Earthquake frequency in the reservoir region had a positive correlation with reservoir water level fluctuations, indicating that the seismicity belongs to reservoir induced earthquakes. Along the Shenlong River in the reservoir area, earthquakes showed three linear distributions in the northern Badong county, and distributed according to Karst distribution. There are underground rivers in the carbonate strata. When the reservoir was impounded, water permeated into the underground rivers, thus inducing earthquakes. Earthquakes in the areas on the crossriver segment of Xiannvshan fault, the Jiuwanxi fault and at the areas west of Xietan, Shazhen and Xizhen, may be related to the softening of discontinuities, such as the Nukou fault, the Xiannvshan fault, or the bedding joints, which would lead to failure of rock masses, thus, inducing earthquakes. However, convincing conclusions about the triggering mechanism still need further study. Additionally, near the areas south of Wenhua and Yanglin of Zigui county and at Rangkou town east of Badong county, mininginduced earthquakes occurred at the mines nearby, and on the shores of the reservoir are some collapse earthquakes.
基金sponsored by the key lab.program of Shaanxi Province (08JZ04)the key discipline fund for scientific research program of Baoji University of Arts and Science (ZK0796)the key discipline fund for natural geography of Shaanxi Province in Baoji University of Arts and Science
文摘Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.
文摘The Three-Gorge Water Conservancy Project on the Yangtze River started to impound water by locking gates on June 1, 2003. A swarm of more than 2000 small earthquakes suddenly occurred densely along the river section in Xinling Town north of Badong, Hubei Province, on June 7. This caused grave concern in the following years, but, with the completion of the second- and third-phase engineering construction, the water level in the reservoir will rise up to 156 m and 175 m respectively, no matter whether it can induce larger and stronger earthquakes. After an analysis of the distribution of active faults in the eastern part of the reservoir area, their intersections and capability to generate earthquakes from a seismo-tectonic viewpoint, we consider that after the reservoir impounding, two potential focal zones existing in Badong and Zigui counties may generate M 5.5 earthquake, the seismic intensity of which may reach Ⅷ. It will induce landslide bodies in the reservoir area to be reactivated and slide. The evidence is the large-scale landslide occurring on the Shazhenxi Creek river in Zigui County on June 12, 2003.
文摘This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.
基金National Natural Science Foundation of China Under Grant No.90510017Public Welfare Project in Water Conservancy Under Grant No. 200701004
文摘This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are briefly described. Lessons learned related to dam safety from this devastating earthquake are preliminarily drawn. As the seismic safety of high dams during strong earthquakes has gained more attention around the world, some critical issues related to dam construction in China are considered and extensively discussed. Questions such as "Why is dam construction necessary in earthquake prone countries such as China?", "Can we accurately evaluate the seismic safety of high dams in China?", "Did reservoir impounding of the Zipingpu and Three Gorges Projects trigger the Wenchuan Earthquake in some way?" and "What is the strategic priority of dam safety for large dams in China?" are discussed. Finally, the corresponding tactics with response to the challenge are suggested and recent preliminary progress mainly achieved in IWHR is briefly introduced.