In order to generate the three-dimensional (3-D) hull surface accurately and smoothly,a mixed method which is made up of non-uniform B-spline together with an iterative procedure was developed.By using the iterative m...In order to generate the three-dimensional (3-D) hull surface accurately and smoothly,a mixed method which is made up of non-uniform B-spline together with an iterative procedure was developed.By using the iterative method the data points on each section curve are calculated and the generalized waterlines and transverse section curves are determined.Then using the non-uniform B-spline expression,the control vertex net of the hull is calculated based on the generalized waterlines and section curves.A ship with tunnel stern was taken as test case.The numerical results prove that the proposed approach for geometry modeling of 3-D ship hull surface is accurate and effective.展开更多
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that ...In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc展开更多
We introduce a kind of shape-adjustable spline curves defined over a non-uniform knot sequence.These curves not only have the many valued properties of the usual non-uniform B-spline curves,but also are shape adjustab...We introduce a kind of shape-adjustable spline curves defined over a non-uniform knot sequence.These curves not only have the many valued properties of the usual non-uniform B-spline curves,but also are shape adjustable under fixed control polygons.Our method is based on the degree elevation of B-spline curves,where maximum degrees of freedom are added to a curve parameterized in terms of a non-uniform B-spline.We also discuss the geometric effect of the adjustment of shape parameters and propose practical shape modification algorithms,which are indispensable from the user's perspective.展开更多
The recurrence algorithm is given for the calculation of NUAH B-splines in the space Sn+1 = span{sinh t, cosh t,tn-3,...,t2.t, 1} (n≥3). The case of NUAH B-spline bases of low order with multiple knot sequences is st...The recurrence algorithm is given for the calculation of NUAH B-splines in the space Sn+1 = span{sinh t, cosh t,tn-3,...,t2.t, 1} (n≥3). The case of NUAH B-spline bases of low order with multiple knot sequences is studied. The limiting cases of UAH B-splines are recovered when shape parameters a's→0+and+∞. Then the corresponding NUAH B-spline curve is defined and its main properties such as shape-preserving properties are investigated.展开更多
Three-dimension reconstruction from serial sections has been used in the last decade to obtain information concerning three-dimensional microstructural ge-ometry. One of the crucial steps of three-dimension reconstruc...Three-dimension reconstruction from serial sections has been used in the last decade to obtain information concerning three-dimensional microstructural ge-ometry. One of the crucial steps of three-dimension reconstruction is getting compact and fairing grain contours. Based on the achievement of closed raw con-tours of ceramic composite grains by using wavelet and level set, an adaptive method is adopted for the polygonal approximation of the digitized raw contours. Instead of setting a fixed length of support region in advance, the novel method computes the suitable length of support region for each point to find the best es-timated curvature. The dominant points are identified as the points with local maximum estimated curvatures. Periodic closed B-spline approximation is used to find the most compact B-spline grain boundary contours within the given tolerance. A flexible distance selection approach is adopted to obtain the common knot vector of serial contours consisting of less knots that contain enough degrees of freedom to guarantee the existence of a B-spline curve interpolating each contour. Finally, a B-spline surface interpolating the serial contours is generated via B-spline surface skinning.展开更多
The representation method of heterogeneous material information is one of the key technologies of heterogeneous object modeling, but almost all the existing methods cannot represent non-uniform rational B-spline (NU...The representation method of heterogeneous material information is one of the key technologies of heterogeneous object modeling, but almost all the existing methods cannot represent non-uniform rational B-spline (NURBS) entity. According to the characteristics of NURBS, a novel data structure, named NURBS material data structure, is proposed, in which the geometrical coordinates, weights and material coordinates of NURBS heterogene- ous objects can be represented simultaneously. Based on this data structure, both direct representation method and inverse construction method of heterogeneous NURBS objects are introduced. In the direct representation method, three forms of NURBS heterogeneous objects are introduced by giving the geometry and material information of con- trol points, among which the homogeneous coordinates form is employed for its brevity and easy programming. In the inverse construction method, continuous heterogeneous curves and surfaces can he obtained by interpolating discrete points and curves with specified material information. Some examples are given to show the effectiveness of the pro- posed methods.展开更多
Methods of digital human modeling have been developed and utilized to reflect human shape features.However,most of published works focused on dynamic visualization or fashion design,instead of high-accuracy modeling,w...Methods of digital human modeling have been developed and utilized to reflect human shape features.However,most of published works focused on dynamic visualization or fashion design,instead of high-accuracy modeling,which was strongly demanded by medical or rehabilitation scenarios.Prior to a high-accuracy modeling of human legs based on non-uniform rational B-splines(NURBS),the method of extracting the required quasi-grid network of feature points for human legs is presented in this work.Given the 3 D scanned human body,the leg is firstly segmented and put in standardized position.Then re-sampling of the leg is conducted via a set of equidistant cross sections.Through analysis of leg circumferences and circumferential curvature,the characteristic sections of the leg as well as the characteristic points on the sections are then identified according to the human anatomy and shape features.The obtained collection can be arranged to form a grid of data points for knots calculation and high-accuracy shape reconstruction in future work.展开更多
This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as th...This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as the solver of physical unknown(SGTHB-ITO-MMC).By applying properly basis graded constraints to the hierarchical mesh of truncated hierarchical B-splines(THB),the convergence and robustness of the SGTHB-ITOMMC are simultaneously improved and the tiny holes occurred in optimized structure are eliminated,due to the improved accuracy around the explicit structural boundaries.Moreover,an efficient computational method is developed for the topological description functions(TDF)ofMMC under the admissible hierarchicalmesh,which consists of reducing the dimensionality strategy for design space and the locally computing strategy for hierarchical mesh.We apply the above SGTHB-ITO-MMC with improved efficiency to a series of 2D and 3Dcompliance design problems.The numerical results show that the proposed SGTHB-ITO-MMC method outperforms the traditional THB-ITO-MMCmethod in terms of convergence rate and efficiency.Therefore,the proposed SGTHB-ITO-MMC is an effective way of solving topology optimization(TO)problems.展开更多
Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing ...Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing the problem of B-splinefitting for cam pitch curves.Considering that the B-spline curve needs to meet the motion law of the follower to approximate the pitch curve,we use the radial error to quantify the effects of thefitting B-spline curve and the pitch curve.The problem thus boils down to solving a difficult global optimization problem tofind the numbers and positions of the control points or data points of the B-spline curve such that the cumulative radial error between thefitting curve and the original curve is minimized,and this problem is attempted in this paper with a double deep Q-network(DDQN)reinforcement learning(RL)algorithm with data points traceability.Specifically,the RL envir-onment,actions set and current states set are designed to facilitate the search of the data points,along with the design of the reward function and the initialization of the neural network.The experimental results show that when the angle division value of the actions set isfixed,the proposed algorithm can maximize the number of data points of the B-spline curve,and accurately place these data points to the right positions,with the minimum average of radial errors.Our work establishes the theoretical foundation for studying splinefitting using the RL method.展开更多
A B-spline Interpolation Transport Solver(BITS) based on a collocation method is developed. It solves transport equations as a generalized interpolation problem, taking the first-order accuracy in time and the second-...A B-spline Interpolation Transport Solver(BITS) based on a collocation method is developed. It solves transport equations as a generalized interpolation problem, taking the first-order accuracy in time and the second-order accuracy in space along with a predictor–corrector or under-relaxation iteration method. Numerical tests show that BITS can solve one-dimensional transport equations for tokamak plasma more accurately without additional computation cost, compared to the finite difference method transport solver which is widely used in existing tokamak transport codes.展开更多
Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor gen...Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor generates a helper data and a random string from biometric data and uses the helper data to reproduce the random string from the second reading.In 2013,Fuller et al.proposed a computational fuzzy extractor based on the learning with errors problem.Their construction,however,can tolerate a sub-linear fraction of errors and has an inefficient decoding algorithm,which causes the reproducing time to increase significantly.In 2016,Canetti et al.proposed a fuzzy extractor with inputs from low-entropy distributions based on a strong primitive,which is called digital locker.However,their construction necessitates an excessive amount of storage space for the helper data,which is stored in authentication server.Based on these observations,we propose a new efficient computational fuzzy extractorwith small size of helper data.Our scheme supports reusability and robustness,which are security notions that must be satisfied in order to use a fuzzy extractor as a secure authentication method in real life.Also,it conceals no information about the biometric data and thanks to the new decoding algorithm can tolerate linear errors.Based on the non-uniform learning with errors problem,we present a formal security proof for the proposed fuzzy extractor.Furthermore,we analyze the performance of our fuzzy extractor scheme and provide parameter sets that meet the security requirements.As a result of our implementation and analysis,we show that our scheme outperforms previous fuzzy extractor schemes in terms of the efficiency of the generation and reproduction algorithms,as well as the size of helper data.展开更多
基金The Special Research Fund for the Doctoral Program of Higher Education(No.20050248037)The National Natural Science Foundation of China(No.10572094)
文摘In order to generate the three-dimensional (3-D) hull surface accurately and smoothly,a mixed method which is made up of non-uniform B-spline together with an iterative procedure was developed.By using the iterative method the data points on each section curve are calculated and the generalized waterlines and transverse section curves are determined.Then using the non-uniform B-spline expression,the control vertex net of the hull is calculated based on the generalized waterlines and section curves.A ship with tunnel stern was taken as test case.The numerical results prove that the proposed approach for geometry modeling of 3-D ship hull surface is accurate and effective.
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
文摘In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc
基金Project supported by the National Natural Science Foundation of China (Nos. 60970079,60933008,61100105,and 61100107)the Natural Science Foundation of Fujian Province of China (No.2011J05007)the National Defense Basic Scientific Research Program of China (No. B1420110155)
文摘We introduce a kind of shape-adjustable spline curves defined over a non-uniform knot sequence.These curves not only have the many valued properties of the usual non-uniform B-spline curves,but also are shape adjustable under fixed control polygons.Our method is based on the degree elevation of B-spline curves,where maximum degrees of freedom are added to a curve parameterized in terms of a non-uniform B-spline.We also discuss the geometric effect of the adjustment of shape parameters and propose practical shape modification algorithms,which are indispensable from the user's perspective.
文摘The recurrence algorithm is given for the calculation of NUAH B-splines in the space Sn+1 = span{sinh t, cosh t,tn-3,...,t2.t, 1} (n≥3). The case of NUAH B-spline bases of low order with multiple knot sequences is studied. The limiting cases of UAH B-splines are recovered when shape parameters a's→0+and+∞. Then the corresponding NUAH B-spline curve is defined and its main properties such as shape-preserving properties are investigated.
基金the National Programs for High Technology Research and Development of China (Grant No. 2002AA332100), the National Natural Science Foundation of China (Grant No. 50672090)
文摘Three-dimension reconstruction from serial sections has been used in the last decade to obtain information concerning three-dimensional microstructural ge-ometry. One of the crucial steps of three-dimension reconstruction is getting compact and fairing grain contours. Based on the achievement of closed raw con-tours of ceramic composite grains by using wavelet and level set, an adaptive method is adopted for the polygonal approximation of the digitized raw contours. Instead of setting a fixed length of support region in advance, the novel method computes the suitable length of support region for each point to find the best es-timated curvature. The dominant points are identified as the points with local maximum estimated curvatures. Periodic closed B-spline approximation is used to find the most compact B-spline grain boundary contours within the given tolerance. A flexible distance selection approach is adopted to obtain the common knot vector of serial contours consisting of less knots that contain enough degrees of freedom to guarantee the existence of a B-spline curve interpolating each contour. Finally, a B-spline surface interpolating the serial contours is generated via B-spline surface skinning.
基金Supported by National Natural Science Foundation of China (No. 60973079)Natural Science Foundation of Hebei Province (No. E2006000039)
文摘The representation method of heterogeneous material information is one of the key technologies of heterogeneous object modeling, but almost all the existing methods cannot represent non-uniform rational B-spline (NURBS) entity. According to the characteristics of NURBS, a novel data structure, named NURBS material data structure, is proposed, in which the geometrical coordinates, weights and material coordinates of NURBS heterogene- ous objects can be represented simultaneously. Based on this data structure, both direct representation method and inverse construction method of heterogeneous NURBS objects are introduced. In the direct representation method, three forms of NURBS heterogeneous objects are introduced by giving the geometry and material information of con- trol points, among which the homogeneous coordinates form is employed for its brevity and easy programming. In the inverse construction method, continuous heterogeneous curves and surfaces can he obtained by interpolating discrete points and curves with specified material information. Some examples are given to show the effectiveness of the pro- posed methods.
基金National Natural Science Foundation of China(Nos.12002085 and 51603039)Shanghai Pujiang Program,China(No.19PC002)+1 种基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-58)Initial Research Funds for Young Teachers of Donghua University,China(No.104-07-0053088)。
文摘Methods of digital human modeling have been developed and utilized to reflect human shape features.However,most of published works focused on dynamic visualization or fashion design,instead of high-accuracy modeling,which was strongly demanded by medical or rehabilitation scenarios.Prior to a high-accuracy modeling of human legs based on non-uniform rational B-splines(NURBS),the method of extracting the required quasi-grid network of feature points for human legs is presented in this work.Given the 3 D scanned human body,the leg is firstly segmented and put in standardized position.Then re-sampling of the leg is conducted via a set of equidistant cross sections.Through analysis of leg circumferences and circumferential curvature,the characteristic sections of the leg as well as the characteristic points on the sections are then identified according to the human anatomy and shape features.The obtained collection can be arranged to form a grid of data points for knots calculation and high-accuracy shape reconstruction in future work.
基金supported by the National Key R&D Program of China (2020YFB1708300)the Project funded by the China Postdoctoral Science Foundation (2021M701310).
文摘This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as the solver of physical unknown(SGTHB-ITO-MMC).By applying properly basis graded constraints to the hierarchical mesh of truncated hierarchical B-splines(THB),the convergence and robustness of the SGTHB-ITOMMC are simultaneously improved and the tiny holes occurred in optimized structure are eliminated,due to the improved accuracy around the explicit structural boundaries.Moreover,an efficient computational method is developed for the topological description functions(TDF)ofMMC under the admissible hierarchicalmesh,which consists of reducing the dimensionality strategy for design space and the locally computing strategy for hierarchical mesh.We apply the above SGTHB-ITO-MMC with improved efficiency to a series of 2D and 3Dcompliance design problems.The numerical results show that the proposed SGTHB-ITO-MMC method outperforms the traditional THB-ITO-MMCmethod in terms of convergence rate and efficiency.Therefore,the proposed SGTHB-ITO-MMC is an effective way of solving topology optimization(TO)problems.
基金supported by Fujian Province Nature Science Foundation under Grant No.2018J01553.
文摘Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing the problem of B-splinefitting for cam pitch curves.Considering that the B-spline curve needs to meet the motion law of the follower to approximate the pitch curve,we use the radial error to quantify the effects of thefitting B-spline curve and the pitch curve.The problem thus boils down to solving a difficult global optimization problem tofind the numbers and positions of the control points or data points of the B-spline curve such that the cumulative radial error between thefitting curve and the original curve is minimized,and this problem is attempted in this paper with a double deep Q-network(DDQN)reinforcement learning(RL)algorithm with data points traceability.Specifically,the RL envir-onment,actions set and current states set are designed to facilitate the search of the data points,along with the design of the reward function and the initialization of the neural network.The experimental results show that when the angle division value of the actions set isfixed,the proposed algorithm can maximize the number of data points of the B-spline curve,and accurately place these data points to the right positions,with the minimum average of radial errors.Our work establishes the theoretical foundation for studying splinefitting using the RL method.
基金the National MCF Energy R&D Program of China(No.2019YFE03040004)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the National MCF Energy R&D Program of China(No.2019YFE03060000)。
文摘A B-spline Interpolation Transport Solver(BITS) based on a collocation method is developed. It solves transport equations as a generalized interpolation problem, taking the first-order accuracy in time and the second-order accuracy in space along with a predictor–corrector or under-relaxation iteration method. Numerical tests show that BITS can solve one-dimensional transport equations for tokamak plasma more accurately without additional computation cost, compared to the finite difference method transport solver which is widely used in existing tokamak transport codes.
基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2022-0-00518,Blockchain privacy preserving techniques based on data encryption).
文摘Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor generates a helper data and a random string from biometric data and uses the helper data to reproduce the random string from the second reading.In 2013,Fuller et al.proposed a computational fuzzy extractor based on the learning with errors problem.Their construction,however,can tolerate a sub-linear fraction of errors and has an inefficient decoding algorithm,which causes the reproducing time to increase significantly.In 2016,Canetti et al.proposed a fuzzy extractor with inputs from low-entropy distributions based on a strong primitive,which is called digital locker.However,their construction necessitates an excessive amount of storage space for the helper data,which is stored in authentication server.Based on these observations,we propose a new efficient computational fuzzy extractorwith small size of helper data.Our scheme supports reusability and robustness,which are security notions that must be satisfied in order to use a fuzzy extractor as a secure authentication method in real life.Also,it conceals no information about the biometric data and thanks to the new decoding algorithm can tolerate linear errors.Based on the non-uniform learning with errors problem,we present a formal security proof for the proposed fuzzy extractor.Furthermore,we analyze the performance of our fuzzy extractor scheme and provide parameter sets that meet the security requirements.As a result of our implementation and analysis,we show that our scheme outperforms previous fuzzy extractor schemes in terms of the efficiency of the generation and reproduction algorithms,as well as the size of helper data.