Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform samp...Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.展开更多
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys...For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.展开更多
In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when...In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when sampling sequence is long. Particularly, a transformation matrix is built, and the reconstructed spectrum is perfectly synthesized from the spectrum of every sampling channel. The fast algorithm has solved efficiency issues of spectrum reconstruction algorithm, and making it possible for the actual application of spectrum reconstruction algorithm in multi-channel Synthetic Aperture Radar (SAR).展开更多
A maximum test in lieu of forcing a choice between the two dependent samples t-test and Wilcoxon signed-ranks test is proposed. The maximum test, which requires a new table of critical values, maintains nominal α whi...A maximum test in lieu of forcing a choice between the two dependent samples t-test and Wilcoxon signed-ranks test is proposed. The maximum test, which requires a new table of critical values, maintains nominal α while guaranteeing the maximum power of the two constituent tests. Critical values, obtained via Monte Carlo methods, are uniformly smaller than the Bonferroni-Dunn adjustment, giving it power superiority when testing for treatment alternatives of shift in location parameter when data are sampled from non-normal distributions.展开更多
This paper describes an approximated-scalar-sign-function-based anti-windup digital control design for analog nonlinear systems subject to input constraints. As input saturation occurs, the non-smooth saturation const...This paper describes an approximated-scalar-sign-function-based anti-windup digital control design for analog nonlinear systems subject to input constraints. As input saturation occurs, the non-smooth saturation constraint is modeled with the approximated scalar sign function which is a smooth nonlinear function. The resulting nonlinear model is further linearized at any operating point with the optimal linearization technique, and Linear Quadratic Regulator (LQR) is then applied for a state-feedback controller optimal for each operating point. As input saturation is encountered, an iterative procedure is developed to adjust control gains by systematically updating LQR weighting matrices until the inputs lie within the saturation limits. Through global digital redesign, the analog LQR controller is converted to an equivalent digital one for keeping the essential control performance, and moreover, delay compensation is taken into account during digital redesign for compensating the potential time delays in a control loop. The swing-up and stabilization control of single rotary inverted pendulum system is used to illustrate and verify the proposed method.展开更多
Background: Metagenomic sequencing is a complex sampling procedure from unknown mixtures of many genomes. Having metagenome data with known genome compositions is essential for both benchmarking bioinformatics softwa...Background: Metagenomic sequencing is a complex sampling procedure from unknown mixtures of many genomes. Having metagenome data with known genome compositions is essential for both benchmarking bioinformatics software and for investigating influences of various factors on the data. Compared to data from real microbiome samples or from defined microbial mock community, simulated data with proper computational models are better for the purpose as they provide more flexibility for controlling multiple factors. Methods: We developed a non-uniform metagenomic sequencing simulation system (nuMetaSim) that is capable of mimicking various factors in real metagenomic sequencing to reflect multiple properties of real data with customizable parameter settings. Results: We generated 9 comprehensive metagenomic datasets with different composition complexity from of 203 bacterial genomes and 2 archaeal genomes related with human intestine system. Conclusion: The data can serve as benchmarks for comparing performance of different methods at different situations, and the software package allows users to generate simulation data that can better reflect the specific properties in their scenarios.展开更多
基金Projects 07KJZ11 supported by the President Fund of Xuzhou Medical School07KJB310117 by the Education Department of Jiangsu Province
文摘Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.
基金supported by the National Natural Science Foundation of China(61273070,61203092)the Enterprise-college-institute Cooperative Project of Jiangsu Province(BY2015019-21)+1 种基金111 Project(B12018)the Fun-damental Research Funds for the Central Universities(JUSRP51733B)
文摘For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
文摘In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when sampling sequence is long. Particularly, a transformation matrix is built, and the reconstructed spectrum is perfectly synthesized from the spectrum of every sampling channel. The fast algorithm has solved efficiency issues of spectrum reconstruction algorithm, and making it possible for the actual application of spectrum reconstruction algorithm in multi-channel Synthetic Aperture Radar (SAR).
文摘A maximum test in lieu of forcing a choice between the two dependent samples t-test and Wilcoxon signed-ranks test is proposed. The maximum test, which requires a new table of critical values, maintains nominal α while guaranteeing the maximum power of the two constituent tests. Critical values, obtained via Monte Carlo methods, are uniformly smaller than the Bonferroni-Dunn adjustment, giving it power superiority when testing for treatment alternatives of shift in location parameter when data are sampled from non-normal distributions.
文摘This paper describes an approximated-scalar-sign-function-based anti-windup digital control design for analog nonlinear systems subject to input constraints. As input saturation occurs, the non-smooth saturation constraint is modeled with the approximated scalar sign function which is a smooth nonlinear function. The resulting nonlinear model is further linearized at any operating point with the optimal linearization technique, and Linear Quadratic Regulator (LQR) is then applied for a state-feedback controller optimal for each operating point. As input saturation is encountered, an iterative procedure is developed to adjust control gains by systematically updating LQR weighting matrices until the inputs lie within the saturation limits. Through global digital redesign, the analog LQR controller is converted to an equivalent digital one for keeping the essential control performance, and moreover, delay compensation is taken into account during digital redesign for compensating the potential time delays in a control loop. The swing-up and stabilization control of single rotary inverted pendulum system is used to illustrate and verify the proposed method.
基金We thank Dr. Hongfei Cui for her comments on the simulation design. This work is partially supported by the National Natural Science Foundation of China (Nos. 61673231 and 61721003).
文摘Background: Metagenomic sequencing is a complex sampling procedure from unknown mixtures of many genomes. Having metagenome data with known genome compositions is essential for both benchmarking bioinformatics software and for investigating influences of various factors on the data. Compared to data from real microbiome samples or from defined microbial mock community, simulated data with proper computational models are better for the purpose as they provide more flexibility for controlling multiple factors. Methods: We developed a non-uniform metagenomic sequencing simulation system (nuMetaSim) that is capable of mimicking various factors in real metagenomic sequencing to reflect multiple properties of real data with customizable parameter settings. Results: We generated 9 comprehensive metagenomic datasets with different composition complexity from of 203 bacterial genomes and 2 archaeal genomes related with human intestine system. Conclusion: The data can serve as benchmarks for comparing performance of different methods at different situations, and the software package allows users to generate simulation data that can better reflect the specific properties in their scenarios.