Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is dev...To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.展开更多
To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out whe...To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out when a single body part is thermally stimulated.Cooling airflow is sent to seven body parts,respectively.Totally 94 samples are tested.To eliminate the obvious multicollinearity of thermal sensation among different body parts,the principal component regression approach is adopted to obtain the principal components for the body parts under different experimental conditions.Through regression and analysis of principal components,the weighting factors of the seven body parts are obtained.A predictive model on whole-body thermal sensation is obtained based on the weighting factors.The results show that the different characteristics of trunk and limbs are clearly seen.The weighting factors of local thermal sensation are integrated values,and there is little difference among values of different body parts.展开更多
A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussia...A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.展开更多
Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO...Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.展开更多
In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems...In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.展开更多
The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deteriorati...The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deterioration along the circumferential direction.The governing equations of mass,momentum and energy have been solved using the pressure-based segregated solver based on the finite volume method.The re-normalization group(RNG)k-εturbulence model with an enhanced wall treatment was selected.Considering the heat conduction in the solid wall,the mechanism of heat transfer deterioration and the buoyancy effect on deteriorated heat transfer were discussed.The evolution of secondary flow was analyzed.Effects of the outer-wall heat flux,mass flux,pressure and tube thermal conductivity on heat transfer were investigated.Moreover,the buoyancy criterion and the heat transfer correlation were obtained.Results indicate that the poor flow performance of near-wall fluid causes the pseudo-film boiling,further leads to the heat transfer deterioration.The strong buoyancy has an effect of enhancing the heat transfer at the bottom of tube,and weakening the heat transfer at the top of tube,which results in the non-uniform inner-wall temperature and heat flux distributions.Decreasing the ratio of outer-wall heat flux and mass flux,increasing the pressure could weaken the heat transfer difference along the circumferential direction,while the effect of thermal conductivity of tube on the circumferential parameters distributions is more complicated.When the buoyancy criterion of(Grq/Grth)max≤0.8 is satisfied,the effect of buoyancy could be ignored.The new correlations work well for non-uniform heat transfer predictions.展开更多
The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct ...The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.展开更多
This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a n...This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument, followed the Monin-Obukhov similarity theory. The similarity constants for heat (CT) and water vapor (Cq) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations.展开更多
There is a remarkable difference in stress distribution between a specimen and a plate removed from the specimen.The plate presents a uniform stress distribution whereas the specimen presents a non-uniform stress dist...There is a remarkable difference in stress distribution between a specimen and a plate removed from the specimen.The plate presents a uniform stress distribution whereas the specimen presents a non-uniform stress distribution.Firstly,the real stress distributions in plates with thickness of 30,40 and 50 mm and then in the specimens were obtained through simulation and X-ray surface stress measurement.Secondly,in order to study the impact of specimens shapes and processing ways on the results accuracy,two irregular shapes (parallelogram and trapezoid) and two processing ways (saw and electron discharge machining (EDM)) were compared and analyzed by simulation and experiment using layer removal method,then the specimen effects on measurement results were evaluated.The results show that:1) the non-uniform stress distribution characteristics of the specimen near the surface of the cut is significant,the range of non-uniform stress distribution is approximately one-thickness distance away from the cut,and it decreases gradually along the depth;2) In order to ensure the stability in the results,it is suitable to take the specimen plane size 2-3 times of its thickness;3) Conventional processing methods have little effect on experimental results and the average deviation is less than 5%.展开更多
The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients....The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width.展开更多
To promote the performance of the traditional multichannel filter bank which leads to speech quality degradation,an efficient design method of the non-uniform cosine modulated filter bank(CMFB) based on the audiogra...To promote the performance of the traditional multichannel filter bank which leads to speech quality degradation,an efficient design method of the non-uniform cosine modulated filter bank(CMFB) based on the audiogram for digital hearing aids is proposed. First, a low-pass prototype filter is designed by the linear iterative algorithm. Secondly,the uniform CMFB is achieved on the basis of the principle formulas. Then, the adjacent channels of a uniform filter bank which have low or gradual slopes are merged according to the trend of audiogram of the hearing impaired person. Finally,the corresponding non-uniform CMFB is obtained. Simulation results show that the signal processed by the proposed filter bank is similar to the original signal in a time-domain waveform and spectrogram without significant distortion or difference. The speech quality results show that the personal evaluation of speech quality(PESQ) of non-uniform CMFB is 35% higher than that of the traditional design, and the hearing-aid speech quality index(HASQI) increases by about 40%.展开更多
Electronic stethoscope is an instrument used for auxiliary determination of patients' physical condition by collecting and processing heart sounds and lung sounds.Since traditional electronic stethoscopes have low se...Electronic stethoscope is an instrument used for auxiliary determination of patients' physical condition by collecting and processing heart sounds and lung sounds.Since traditional electronic stethoscopes have low sensitivity and poor low-frequency response,a novel electronic stethoscope is provided in this paper using curved PVDF clamping structure with non-uniform curvature based on the structure of PVDF and silicone rubber substrate.Theoretical analysis and comparison by means of the corresponding inhomogeneous string vibration model show that sensitivity significantly increases for non-uniform curvature than the uniform one.Furthermore,a new electronic stethoscope pickup is developed based on the optimal parameters at the point of maximum sensitivity of non-uniform curvature.Experiment results show that the sensitivity of the pickup can reach1.7mV/Pa,which increases by 13.3%compared to the one with the structure of uniform curvature PVDF and silicone rubber substrate that has been studied in recent years.Moreover,flat frequency response characteristics can be retained within the frequency band range of 2-2kHz,which covers the frequency response range of cardiopulmonary sound collection,thus provides a strong guarantee for complete acquisition of heart and lung sound signals.展开更多
A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique i...A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique is adopted to deal with the rotational motion of the propeller. The performance of the DES (Detached Eddy Simulation) approach at capturing the unsteady forces and moments on the propeller is compared with experiment. Far-field sound radiation is predicted by the formation 1A developed by Farassat, an integral solution of FW-H (Ffowcs Williams-Hawkings) equation in time domain. The sound pressure and directivity patterns of the propeller operating in two specific velocity distributions are discussed.展开更多
A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization....A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization. In particular, a non-uniform two tier heterogeneous network ( HetNet) is considered, where the pico cells are located close to the macro cell and the number of users in each pico cell is different. To alleviate the interference caused by the co-channeldeployment,the macro cells employ low power ABS (LP- ABS), and the resource blocks (RBs) are divided into twoparts during an ABS. One is exclusively reserved for macro cell users ad the other is reserved for pico cell users. Themacro cells are allowed to use different percentages of RBs and different powers for their own transmission during the LP- ABS. The user association,resource allocation,ABS proportion,the frequency band partition parameter and the transmission power of macro cells are considered, aiming at maximizing the proportional fairness utility of the system. An iterative algorithm is also proposed and simulation results demonstrate that the proposed algorithm can improve both the system throughput and user fairness compared with the existing schemes.展开更多
In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fra...In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fracture mechanics theory.Comparisons with the published experimental data show that the predictions given by the present model are in good agreement with the results both for natural exposed experiments and short-time indoor tests (the best difference is about 2.7%).Also it obviously provides much better precision than those models under the assumption of uniform corrosion (the maximal improved precision is about 48%).Therefore,it is pointed out that the so-called uniform corrosion models to describe the cover cracking of RC should be adopted cautiously.Finally,the influences of thickness of local rusty layer around the reinforcing steel bar on the critical corrosion-induced crack indexes were investigated.It is found that the thickness of local rusty layer has great effect on the critical mass loss of reinforcing steel,threshold expansion pressure,and time to cover cracking.For local rusty layer thickness with a size of a=0.5 mm,the time to cover cracking will increase by about one times when a/b (a,semi-minor axis;b,semi-major axis) changes from 0.1 to 1 mm.展开更多
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金Supported by the National Natural Science Foundation of China(10902051)the Natural Science Foundation of Jiangsu Province(BK2008046)~~
文摘To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.
基金The National Natural Science Foundation of China(No.50678030)
文摘To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out when a single body part is thermally stimulated.Cooling airflow is sent to seven body parts,respectively.Totally 94 samples are tested.To eliminate the obvious multicollinearity of thermal sensation among different body parts,the principal component regression approach is adopted to obtain the principal components for the body parts under different experimental conditions.Through regression and analysis of principal components,the weighting factors of the seven body parts are obtained.A predictive model on whole-body thermal sensation is obtained based on the weighting factors.The results show that the different characteristics of trunk and limbs are clearly seen.The weighting factors of local thermal sensation are integrated values,and there is little difference among values of different body parts.
文摘A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.
基金Supported by the Aeronautic Science Foundation of China(2008ZC52026)the Innovation Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.
基金supported by National Forestry Public Welfare Industry Scientific Research Special Subsidy Project(201304502)
文摘In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.
基金support from the National Natural Science Foundation of China(No.51576027)。
文摘The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deterioration along the circumferential direction.The governing equations of mass,momentum and energy have been solved using the pressure-based segregated solver based on the finite volume method.The re-normalization group(RNG)k-εturbulence model with an enhanced wall treatment was selected.Considering the heat conduction in the solid wall,the mechanism of heat transfer deterioration and the buoyancy effect on deteriorated heat transfer were discussed.The evolution of secondary flow was analyzed.Effects of the outer-wall heat flux,mass flux,pressure and tube thermal conductivity on heat transfer were investigated.Moreover,the buoyancy criterion and the heat transfer correlation were obtained.Results indicate that the poor flow performance of near-wall fluid causes the pseudo-film boiling,further leads to the heat transfer deterioration.The strong buoyancy has an effect of enhancing the heat transfer at the bottom of tube,and weakening the heat transfer at the top of tube,which results in the non-uniform inner-wall temperature and heat flux distributions.Decreasing the ratio of outer-wall heat flux and mass flux,increasing the pressure could weaken the heat transfer difference along the circumferential direction,while the effect of thermal conductivity of tube on the circumferential parameters distributions is more complicated.When the buoyancy criterion of(Grq/Grth)max≤0.8 is satisfied,the effect of buoyancy could be ignored.The new correlations work well for non-uniform heat transfer predictions.
基金supported by National Natural Science Foundation of China(Grant No.51375170)Open Fund of State Key Lab of Environmental Adaptability for Industrial Products of China
文摘The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.
文摘This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument, followed the Monin-Obukhov similarity theory. The similarity constants for heat (CT) and water vapor (Cq) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations.
基金Project(2005CB623708) supported by the National Basic Research Program of China
文摘There is a remarkable difference in stress distribution between a specimen and a plate removed from the specimen.The plate presents a uniform stress distribution whereas the specimen presents a non-uniform stress distribution.Firstly,the real stress distributions in plates with thickness of 30,40 and 50 mm and then in the specimens were obtained through simulation and X-ray surface stress measurement.Secondly,in order to study the impact of specimens shapes and processing ways on the results accuracy,two irregular shapes (parallelogram and trapezoid) and two processing ways (saw and electron discharge machining (EDM)) were compared and analyzed by simulation and experiment using layer removal method,then the specimen effects on measurement results were evaluated.The results show that:1) the non-uniform stress distribution characteristics of the specimen near the surface of the cut is significant,the range of non-uniform stress distribution is approximately one-thickness distance away from the cut,and it decreases gradually along the depth;2) In order to ensure the stability in the results,it is suitable to take the specimen plane size 2-3 times of its thickness;3) Conventional processing methods have little effect on experimental results and the average deviation is less than 5%.
基金Project supported by the National Natural Science Foundation of China(No.11672008)
文摘The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width.
基金The National Natural Science Foundation of China(No.61375028,61673108)China Postdoctoral Science Foundation(No.2016M601696)+2 种基金Qing Lan Projectthe Program for Special Talent in Six Fields of Jiangsu Province(No.2016-DZXX-023)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1601011B)
文摘To promote the performance of the traditional multichannel filter bank which leads to speech quality degradation,an efficient design method of the non-uniform cosine modulated filter bank(CMFB) based on the audiogram for digital hearing aids is proposed. First, a low-pass prototype filter is designed by the linear iterative algorithm. Secondly,the uniform CMFB is achieved on the basis of the principle formulas. Then, the adjacent channels of a uniform filter bank which have low or gradual slopes are merged according to the trend of audiogram of the hearing impaired person. Finally,the corresponding non-uniform CMFB is obtained. Simulation results show that the signal processed by the proposed filter bank is similar to the original signal in a time-domain waveform and spectrogram without significant distortion or difference. The speech quality results show that the personal evaluation of speech quality(PESQ) of non-uniform CMFB is 35% higher than that of the traditional design, and the hearing-aid speech quality index(HASQI) increases by about 40%.
基金Special Fund Project for the Development of Modern Information Service Industry in Guangdong Province,Multiservice Cloud Integration Platform of Smart Family Internet of Things based on the Next Generation of Broadcast Television Networks
文摘Electronic stethoscope is an instrument used for auxiliary determination of patients' physical condition by collecting and processing heart sounds and lung sounds.Since traditional electronic stethoscopes have low sensitivity and poor low-frequency response,a novel electronic stethoscope is provided in this paper using curved PVDF clamping structure with non-uniform curvature based on the structure of PVDF and silicone rubber substrate.Theoretical analysis and comparison by means of the corresponding inhomogeneous string vibration model show that sensitivity significantly increases for non-uniform curvature than the uniform one.Furthermore,a new electronic stethoscope pickup is developed based on the optimal parameters at the point of maximum sensitivity of non-uniform curvature.Experiment results show that the sensitivity of the pickup can reach1.7mV/Pa,which increases by 13.3%compared to the one with the structure of uniform curvature PVDF and silicone rubber substrate that has been studied in recent years.Moreover,flat frequency response characteristics can be retained within the frequency band range of 2-2kHz,which covers the frequency response range of cardiopulmonary sound collection,thus provides a strong guarantee for complete acquisition of heart and lung sound signals.
基金supported by the National Natural Science Foundation of China (Grant No. 11272213)
文摘A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique is adopted to deal with the rotational motion of the propeller. The performance of the DES (Detached Eddy Simulation) approach at capturing the unsteady forces and moments on the propeller is compared with experiment. Far-field sound radiation is predicted by the formation 1A developed by Farassat, an integral solution of FW-H (Ffowcs Williams-Hawkings) equation in time domain. The sound pressure and directivity patterns of the propeller operating in two specific velocity distributions are discussed.
基金The National Science and Technology Major Project(2016ZX03001011-005)the National Natural Science Foundation of China(No.61571123,61521061)+1 种基金the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2017A03)Qing Lan Project
文摘A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization. In particular, a non-uniform two tier heterogeneous network ( HetNet) is considered, where the pico cells are located close to the macro cell and the number of users in each pico cell is different. To alleviate the interference caused by the co-channeldeployment,the macro cells employ low power ABS (LP- ABS), and the resource blocks (RBs) are divided into twoparts during an ABS. One is exclusively reserved for macro cell users ad the other is reserved for pico cell users. Themacro cells are allowed to use different percentages of RBs and different powers for their own transmission during the LP- ABS. The user association,resource allocation,ABS proportion,the frequency band partition parameter and the transmission power of macro cells are considered, aiming at maximizing the proportional fairness utility of the system. An iterative algorithm is also proposed and simulation results demonstrate that the proposed algorithm can improve both the system throughput and user fairness compared with the existing schemes.
基金Project(50925829) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject(50908148) supported by the National Natural Science Foundation of ChinaProjects(2009-K4-23,2010-11-33) supported by the Research of Ministry of Housing and Urban Rural Development of China
文摘In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fracture mechanics theory.Comparisons with the published experimental data show that the predictions given by the present model are in good agreement with the results both for natural exposed experiments and short-time indoor tests (the best difference is about 2.7%).Also it obviously provides much better precision than those models under the assumption of uniform corrosion (the maximal improved precision is about 48%).Therefore,it is pointed out that the so-called uniform corrosion models to describe the cover cracking of RC should be adopted cautiously.Finally,the influences of thickness of local rusty layer around the reinforcing steel bar on the critical corrosion-induced crack indexes were investigated.It is found that the thickness of local rusty layer has great effect on the critical mass loss of reinforcing steel,threshold expansion pressure,and time to cover cracking.For local rusty layer thickness with a size of a=0.5 mm,the time to cover cracking will increase by about one times when a/b (a,semi-minor axis;b,semi-major axis) changes from 0.1 to 1 mm.