Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI...Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.展开更多
RGD-containing peptide ( K16-GRGDSPC) , characterized as non-viral gene vectors, was fabricated to modify the surface of PLGA-[ASP- PEG] matrix, which offered the foundation for gene transfer with porous matrix of g...RGD-containing peptide ( K16-GRGDSPC) , characterized as non-viral gene vectors, was fabricated to modify the surface of PLGA-[ASP- PEG] matrix, which offered the foundation for gene transfer with porous matrix of gene activated later. Peptide was synthesized and matrix was executed into chips A, B and chip C. Chip C was regarded as control. Chips A and B were reacted with cross-linker. Then chip A was reacted with peptide. MS and HPLC were ased to detect the .14W and purity of peptide. Sulphur, existing on the surface of biomaterials, was detected by XPS. The purity of un-reacted peptide in residual solution was detected by a spectrophotometer. HPLC shows that the peptide purity was 94%- 95% , and MS shows that the MW was 2 741. 3307. XPS reveals that the binding energy of sulphur was 164 eV and the ratio of carbon to sulphur (C/S) was 99. 746 :0. 1014 in reacted chip A. The binding energy of sulphur in reacted chip B was 164 eV and 162 eV, C/ S was 99.574:0.4255, aM there was no sulphur in chip C. Peptide was manufactured and linked to the surface of biomimetic and 3-D matrix, which offered the possibilities for gene transfer and tissue engineering with this new kind of non-viral gene vector.展开更多
Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc). The technique was quickly re- produced with human f...Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc). The technique was quickly re- produced with human fibroblasts or mesenchymal stem cells. Although having been showed therapeutic po- tential in animal models of sickle ceil anemia and Parkinson's disease, iPS cells generated by viral methods do not suit all the clinical applications. Various non-viral methods have appeared in recent years for application of iPS cells in cell transplantation therapy. These methods mainly include DNA vector-based approaches, transfection of mRNA, and transduction of reprogramming proteins. This review summarized these non-viral methods and compare the advantages, disadvantages, efficiency, and safety of these methods.展开更多
The lack of efficient and non-toxic gene delivery, preferably with non-viral DNA vectors, is generally regarded as a major limitation for gene therapy. In this study, a wheat histone H4 gene was cloned from Triticum a...The lack of efficient and non-toxic gene delivery, preferably with non-viral DNA vectors, is generally regarded as a major limitation for gene therapy. In this study, a wheat histone H4 gene was cloned from Triticum aestivum, sequenced, modified and expressed in E. coli. The wheat histone H4 gene and reconstructed H4TL gene encoded wheat histone H4 and a recombinant protein of 141 amino acids with an approximate molecular weight of 15500. Gel electrophoresis mobility shift assays demonstrated that the purified protein had high affinity for DNA. Most significantly, the complex of plasmid pEGFP/C1 with H4TL was transfected with increased efficiency into MCF-7, HO8910, LNCap, A549 and HeLa cells in vitro. These results demonstrate that the targeting of non-viral vectors to tumor-specific receptors provides a cheap, simple and highly efficient tool for gene delivery.展开更多
Objective: To compare the transferring efficiency and killing effects of one time and continuous mediation with GE7, a non-viral targeted delivery system, in transfection of thymidine kinase gene of herpes simplex vi...Objective: To compare the transferring efficiency and killing effects of one time and continuous mediation with GE7, a non-viral targeted delivery system, in transfection of thymidine kinase gene of herpes simplex virus (HSV-tk) into ovarian cancer cells. Methods: GE7 was used to prepare recombinants with β-galactosidase (β-gal) and HSVI-tk; the recombinants were then used to transfect human ovarian cancer line CaOV3 once and continuously. β-gal staining was used to compare the efficiencies of one time and continuous mediation with GE7 system. Ganciclovior (GCV) was introduced into HSVI-tk transfected ovarian cells. Through drawing the cell growth curve and flow cytometry, the killing effects of GCV on once and continuously GE7/HSVI-tk transfected cells were observed. Results: We found that the one time and continuous exogenous gene transfer efficiencies were about 80% and 85%, respectively. When 1 μg/mL GCV was used to treat ovarian cell transfected with HSVI-tk gene, growth inhibiting rates of ovarian cells of one time and continuous transferring were 82% and 90%, respectively; their apoptosis indices were 15 and 30, respectively. Under same GCV concentration, continuous mediation of GE7/pCMV-tk transfection into ovarian cancer cells had more significant inhibitory effect than one time mediation (P 〈 0.05). Conclusion: Compared with one time mediation, continuous mediation of transfection with GE7 gene delivery system has higher efficiency. Continuous mediation of GE7/HSVI-tk/GCV therapeutic gene system has more powerful killing effect.展开更多
Objective: To construct the EGFR targeted non-viral vector GE7 system and explore the in vitro effect of p21WAF-1/CIPI gene on growth of human glioma cells mediated by the GE7 system. Methods: The EGFR targeted non-vi...Objective: To construct the EGFR targeted non-viral vector GE7 system and explore the in vitro effect of p21WAF-1/CIPI gene on growth of human glioma cells mediated by the GE7 system. Methods: The EGFR targeted non-viral vector GE7 gene delivery system was constructed. The malignant human glioma cell line U251MG was transfected in vitro with β-galactosidase gene ( reporter gene) and p21WAF-1/CIPI gee (therapeutic gene) using the GE7 system. By means of X-gal staining, MTS and FACS, the transfection efficiency of exogenous gene and apoptosis rate of tumor cells were examined. The expression of p21WAF-1/ CIPI gene in transfected U251MG cell was examined by immunohistochemis-try staining. Results: The highest transfer rate of exogenous gene was 70% . After transfection with p21WAF-1/CIPI gene, the expression of WAF-1 increased remarkably and steadily; the growth of U251MG cells were inhibited evidently. FACS examination showed G1 arrest. The average apoptosis rate was 25.2%. Conclusion: GE7 system has the ability to transfer exogenous gene to targeted cells efficiently, and expression of p21WAF-1/CIPI gene can induce apoptosis of glioma cell and inhibit its growth.展开更多
Posterior capsule opacification(PCO),the most common complication after cataract surgery,is caused by the proliferation,migration and epithelial-mesenchymal transition(EMT)of residual lens epithelial cells in the caps...Posterior capsule opacification(PCO),the most common complication after cataract surgery,is caused by the proliferation,migration and epithelial-mesenchymal transition(EMT)of residual lens epithelial cells in the capsule bag.Although the surface modification and drug loading of intraocular lens(IOLs)have been effective in preventing PCO to some extent,the intraocular safety of anti-proliferative drug application is still a major limitation in clinical application.In this study,we used non-viral gene delivery systems in combination with layer-by-layer(LBL)self-assembly technology,and the modified IOL could effectively prevent the development of PCO by interfering with the EMT process mediated by the platelet-derived growth factor receptor-α(PDGFR-α).Herein,the gene fragments were wrapped by electrostatic conjugation using polyethyleneimine-graft-poly(ethylene glycol)to form gene complexes.Gene complexes were characterized by dynamic light scattering,transmission electron microscopy(TEM)and agarose gel electrophoresis,and evaluated for storage and serum stability.The layer assembly behavior of the IOL surface,changes in optical properties and the release behavior of the gene complexes were characterized using quartz crystal microbalance,UV-vis,contact angle and TEM.In vitro experiments showed that the IOL coating has good bio-compatibility and can achieve the corresponding transfection effect,and the released gene complexes exhibited excellent cell internalization and lysosomal escape behaviors,as well as effective inhibition of PDGFR-αexpression and its mediated EMT process.The early PCO prevention effect and bio-compatibility evaluation of the modified IOL in vivo were evaluated by implantation into animal eyes.This study provides a new strategy for the development of surface modifications of small nucleic acid drugs and non-toxic EMT interference therapies for PCO.展开更多
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases.Localized delivery of siRNA to lungs has shown to result in severalfold h...Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases.Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route,while minimizing non-specific distribution in other organs.However,to date,only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases.Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches.We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs.We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections,chronic obstructive pulmonary diseases,acute lung injury,and lung cancer,list outstanding questions,and highlight directions for future research.We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.展开更多
The emergence of the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)genome-editing system has brought about a significant revolution in the realm of managing human d...The emergence of the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)genome-editing system has brought about a significant revolution in the realm of managing human diseases,establishing animal models,and so on.To fully harness the potential of this potent gene-editing tool,ensuring efficient and secure delivery to the target site is paramount.Consequently,developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research.In this review,we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system.We also provide an indepth analysis of physical,viral vector,and non-viral vector delivery strategies,including plasmid-,mRNA-and protein-based approach.In addition,we illustrate the biomedical applications of the CRISPR/Cas9 system.This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system,while also delineating future directions and prospects that could inspire innovative delivery strategies.This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.展开更多
The clustered regularly interspaced short palindromic repeats(CRISPR)-associated protein 9(CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a...The clustered regularly interspaced short palindromic repeats(CRISPR)-associated protein 9(CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs(sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies.Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.展开更多
Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity.Currently,gene therapy drugs such as siRNA,shRNA,antisense oligonucleotide,CRISPR/Cas9 system,plas...Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity.Currently,gene therapy drugs such as siRNA,shRNA,antisense oligonucleotide,CRISPR/Cas9 system,plasmid DNA and miRNA have shown great potential in biomedical applications.To avoid the degradation of gene therapy drugs in the body and effectively deliver them to target tissues,cells and organelles,the development of excellent drug delivery vehicles is of utmost importance.Viral vectors are the most widely used delivery vehicles for gene therapy in vivo and in vitro due to their high transfection efficiency and stable transgene expression.With the development of nanotechnology,novel nanocarriers are gradually replacing viral vectors,emerging superior performance.This review mainly illuminates the current widely used gene therapy drugs,summarizes the viral vectors and non-viral vectors that deliver gene therapy drugs,and sums up the application of gene therapy to treat genetic diseases.Additionally,the challenges and opportunities of the field are discussed from the perspective of developing an effective nano-delivery system.展开更多
Hepatocellular carcinoma(HCC) is the most common primary malignancy of the liver. It is the second leading cause of cancer-related deaths worldwide, with a very poor prognosis. In the United States, there has been onl...Hepatocellular carcinoma(HCC) is the most common primary malignancy of the liver. It is the second leading cause of cancer-related deaths worldwide, with a very poor prognosis. In the United States, there has been only minimal improvement in the prognosis for HCC patients over the past 15 years. Details of the molecular mechanisms and other mechanisms of HCC progression remain unclear. Consequently, there is an urgent need for better understanding of these mechanisms. HCC is often diagnosed at advanced stages, and most patients will therefore need systemic therapy, with sorafenib being the most common at the present time. However, sorafenib therapy only minimally enhances patient survival. This review provides a summary of some of the known mechanisms that either cause HCC or contribute to its progression. Included in this review are the roles of viral hepatitis, non-viral hepatitis, chronic alcohol intake, genetic predisposition and congenital abnormalities, toxic exposures, and autoimmune diseases of the liver. Well-established molecular mechanisms of HCC progression such as epithelial-mesenchymal transition, tumor-stromal interactions and the tumor microenvironment, cancer stem cells, and senescence bypass are also discussed. Additionally, we discuss the roles of circulating tumor cells,immunomodulation, and neural regulation as potential new mechanisms of HCC progression. A better understanding of these mechanisms could have implications for the development of novel and more effective therapeutic and prognostic strategies, which are critically needed.展开更多
One of the major research focuses in the field of gene therapy is the development of clinically applicable, safe, and effective gene-delivery methods. Since the first case of human gene therapy was performed in 1990, ...One of the major research focuses in the field of gene therapy is the development of clinically applicable, safe, and effective gene-delivery methods. Since the first case of human gene therapy was performed in 1990, a number of gene-delivery methods have been developed, evaluated for efficacy and safety, and modified for human application. To date, viral-vectormediated deliveries have shown effective therapeutic results. However, the risk of lethal immune response and carcinogenesis have been reported, and it is still controversial to be applied as a standard therapeutic option. On the other hand, delivery methods for nonviral vector systems have been developed, extensively studied, and utilized in in vivo gene-transfer studies. Compared to viral-vector mediated gene transfer, nonviral systems have less risk of biological reactions. However, the lower gene-transfer efficiency was a critical hurdle for applying them to human gene therapy. Among a number of nonviral vector systems, our studies focus on hydrodynamic gene delivery to utilize physical force to deliver naked DNA into the cells in the living animals. This method achieves a high gene-transfer level by DNA solution injections into the tail vein of rodents, especially in the liver. With the development of genome editing methods, in vivo gene-transfer therapy using this method is currently the focus in this research field. This review explains the method principle, efficiency, safety, and procedural modifications to achieve a high level of reproducibility in large-animal models.展开更多
N-Methylene phosphonic chitosan (NMPCS), an amphiphilic macromolecule with powerful chelating ability of Ca^2+ ions, was synthesized and characterized. The physicochernical properties of NMPCS and the interactions ...N-Methylene phosphonic chitosan (NMPCS), an amphiphilic macromolecule with powerful chelating ability of Ca^2+ ions, was synthesized and characterized. The physicochernical properties of NMPCS and the interactions between NMPCS and plasmid DNA were investigated by FTIR, ^13C NMR, X-ray, agarose gel electrophoresis retardation assay, atomic force microscopy (AFM) and circular dichroism (CD). The results suggest that at charge ratio 2:1 or above, DNA could be completely entrapped and spherical complexes with mean size of 80-210 nm were formed. Taking HeLa as host cell, luciferase expression mediated by NMPCS improved about 100 times compared to the expression mediated by chitosan.展开更多
Upon the discovery of RNA interference(RNAi),canonical small interfering RNA(si RNA) has been recognized to trigger sequence-specific gene silencing. Despite the benefits of si RNAs as potential new drugs,there are ob...Upon the discovery of RNA interference(RNAi),canonical small interfering RNA(si RNA) has been recognized to trigger sequence-specific gene silencing. Despite the benefits of si RNAs as potential new drugs,there are obstacles still to be overcome,including off-target effects and immune stimulation. More recently,Dicer substrate si RNA(Dsi RNA) has been introduced as an alternative to si RNA. Similarly,it also is proving to be potent and target-specific,while rendering less immune stimulation. Dsi RNA is 25–30 nucleotides in length,and is further cleaved and processed by the Dicer enzyme. As with si RNA,it is crucial to design and develop a stable,safe,and efficient system for the delivery of Dsi RNA into the cytoplasm of targeted cells. Several polymeric nanoparticle systems have been well established to load Dsi RNA for in vitro and in vivo delivery,thereby overcoming a major hurdle in the therapeutic uses of Dsi RNA. The present review focuses on a comparison of si RNA and Dsi RNA on the basis of their design,mechanism,in vitro and in vivo delivery,and therapeutics.展开更多
A series of novel water soluble chitosan derivatives as gene vectors was synthesized. The delivery systems were tested for their ability to form complexes with plasmid DNA by utilizing agarose gel electrophoresis, par...A series of novel water soluble chitosan derivatives as gene vectors was synthesized. The delivery systems were tested for their ability to form complexes with plasmid DNA by utilizing agarose gel electrophoresis, particle size analysis, zeta potential measurement and scanning electron microscopy. Furthermore, cytotoxicity of chitosan derivatives and transfection efficiency of polyplexes were evaluated in vitro. The experimental results showed that the novel chitosan derivatives had lower cytotoxicity, good DNA condensation, and higher transfection efficiencies compared to chitosan in both 293T and HeLa cell lines. It was indicated that these chitosan derivatives were promising candidates for non-viral gene vectors.展开更多
Objective: To investigate the feasibility of ultrasound (US) mediated enhanced green fluorescent protein (EGFP) gene delivery in subcutaneous transplanted tumors of human cervical carcinoma (He/a) and the contr...Objective: To investigate the feasibility of ultrasound (US) mediated enhanced green fluorescent protein (EGFP) gene delivery in subcutaneous transplanted tumors of human cervical carcinoma (He/a) and the contribution of lipid shell microbubble (LSMB) on gene transfection. Methods: LSMB and plasmid were injected into nude mice by tail vein followed local US irradiation (P + LSMB + US group). US exposure parameter was set at 2.0 W/cm2, 2 rain, duty cycle 20%. EGFP expression was evaluated by imaging for 7 days. Nude mice undergoing plasmid injection alone (P group), plasmid injection and US exposure (P + US group), plasmid and LSMB injection (P + LSMB group) were used as controls. Frozen section and histological examinations were conducted. Expression of EGFP was scored. Kinetics of protein expression post transfection and localization in vivo were evaluated. Results: Plasmid injection with LSMB plus US exposure strongly increased gene transfer efficiency. Strong EGFP expression was mainly seen in LSMB + P + US group. It was significantly higher than any of the following groups, P group, US + P group, or LSMB + P group (P 〈 0.01)./n vivo expression level of post-US 3 days was significantly higher than any other time points (P 〈 0.01). There was not significant expression level of EGFP in other organs or tissues regardless of US exposure. No tissue damage was seen histologically. Conclusion: The combination of LSMB and US exposure could effectively transfer plasmid DNA to transplanted tumors without causing any apparently adverse effect. LSMB could be effective as a non-viral vector system in in vivo gene delivery. It would be a safe gene delivery method and provide an alternative to current clinical gene therapy.展开更多
Summary: To evaluate the feasibility of using polyethyleneimine (PEI) coated magnetic iron oxide nanoparticles (polyMAG-1000) as gene vectors. The surface characteristics of the nanoparticles were observed with scanni...Summary: To evaluate the feasibility of using polyethyleneimine (PEI) coated magnetic iron oxide nanoparticles (polyMAG-1000) as gene vectors. The surface characteristics of the nanoparticles were observed with scanning electron microscopy. The ability of the nanoparticles to combine with and protect DNA was investigated at different PH values after polyMAG-1000 and DNA were combined in different ratios. The nanoparticles were tested as gene vectors with in vitro transfection models. Under the scanning electron microscope the nanoparticles were about 100 nm in diameter. The nanoparticles could bind and condense DNA under acid, neutral and alkaline conditions, and they could transfer genes into cells and express green fluorescent proteins (GFP). The transfection efficiency was highest (51 %) when the ratio of nanoparticles to DNA was 1:1 (v:w). In that ratio, the difference in transfection efficiency was marked depending on whether a magnetic field was present or not: about 10 % when it was absent but 51 % when it was present. The magnetic iron oxide nanoparticles coated with PEI may potentially be used as gene vectors.展开更多
文摘Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.
文摘RGD-containing peptide ( K16-GRGDSPC) , characterized as non-viral gene vectors, was fabricated to modify the surface of PLGA-[ASP- PEG] matrix, which offered the foundation for gene transfer with porous matrix of gene activated later. Peptide was synthesized and matrix was executed into chips A, B and chip C. Chip C was regarded as control. Chips A and B were reacted with cross-linker. Then chip A was reacted with peptide. MS and HPLC were ased to detect the .14W and purity of peptide. Sulphur, existing on the surface of biomaterials, was detected by XPS. The purity of un-reacted peptide in residual solution was detected by a spectrophotometer. HPLC shows that the peptide purity was 94%- 95% , and MS shows that the MW was 2 741. 3307. XPS reveals that the binding energy of sulphur was 164 eV and the ratio of carbon to sulphur (C/S) was 99. 746 :0. 1014 in reacted chip A. The binding energy of sulphur in reacted chip B was 164 eV and 162 eV, C/ S was 99.574:0.4255, aM there was no sulphur in chip C. Peptide was manufactured and linked to the surface of biomimetic and 3-D matrix, which offered the possibilities for gene transfer and tissue engineering with this new kind of non-viral gene vector.
文摘Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc). The technique was quickly re- produced with human fibroblasts or mesenchymal stem cells. Although having been showed therapeutic po- tential in animal models of sickle ceil anemia and Parkinson's disease, iPS cells generated by viral methods do not suit all the clinical applications. Various non-viral methods have appeared in recent years for application of iPS cells in cell transplantation therapy. These methods mainly include DNA vector-based approaches, transfection of mRNA, and transduction of reprogramming proteins. This review summarized these non-viral methods and compare the advantages, disadvantages, efficiency, and safety of these methods.
基金Supported by the National Natural Science Foundation of China(Nos.30471248 30871850)
文摘The lack of efficient and non-toxic gene delivery, preferably with non-viral DNA vectors, is generally regarded as a major limitation for gene therapy. In this study, a wheat histone H4 gene was cloned from Triticum aestivum, sequenced, modified and expressed in E. coli. The wheat histone H4 gene and reconstructed H4TL gene encoded wheat histone H4 and a recombinant protein of 141 amino acids with an approximate molecular weight of 15500. Gel electrophoresis mobility shift assays demonstrated that the purified protein had high affinity for DNA. Most significantly, the complex of plasmid pEGFP/C1 with H4TL was transfected with increased efficiency into MCF-7, HO8910, LNCap, A549 and HeLa cells in vitro. These results demonstrate that the targeting of non-viral vectors to tumor-specific receptors provides a cheap, simple and highly efficient tool for gene delivery.
基金a grant from the National Natural Sciences Foundation of China (No 39800144)
文摘Objective: To compare the transferring efficiency and killing effects of one time and continuous mediation with GE7, a non-viral targeted delivery system, in transfection of thymidine kinase gene of herpes simplex virus (HSV-tk) into ovarian cancer cells. Methods: GE7 was used to prepare recombinants with β-galactosidase (β-gal) and HSVI-tk; the recombinants were then used to transfect human ovarian cancer line CaOV3 once and continuously. β-gal staining was used to compare the efficiencies of one time and continuous mediation with GE7 system. Ganciclovior (GCV) was introduced into HSVI-tk transfected ovarian cells. Through drawing the cell growth curve and flow cytometry, the killing effects of GCV on once and continuously GE7/HSVI-tk transfected cells were observed. Results: We found that the one time and continuous exogenous gene transfer efficiencies were about 80% and 85%, respectively. When 1 μg/mL GCV was used to treat ovarian cell transfected with HSVI-tk gene, growth inhibiting rates of ovarian cells of one time and continuous transferring were 82% and 90%, respectively; their apoptosis indices were 15 and 30, respectively. Under same GCV concentration, continuous mediation of GE7/pCMV-tk transfection into ovarian cancer cells had more significant inhibitory effect than one time mediation (P 〈 0.05). Conclusion: Compared with one time mediation, continuous mediation of transfection with GE7 gene delivery system has higher efficiency. Continuous mediation of GE7/HSVI-tk/GCV therapeutic gene system has more powerful killing effect.
基金Supported by the National High Science and Technical Foundation of China(No. 102-12-02-05)
文摘Objective: To construct the EGFR targeted non-viral vector GE7 system and explore the in vitro effect of p21WAF-1/CIPI gene on growth of human glioma cells mediated by the GE7 system. Methods: The EGFR targeted non-viral vector GE7 gene delivery system was constructed. The malignant human glioma cell line U251MG was transfected in vitro with β-galactosidase gene ( reporter gene) and p21WAF-1/CIPI gee (therapeutic gene) using the GE7 system. By means of X-gal staining, MTS and FACS, the transfection efficiency of exogenous gene and apoptosis rate of tumor cells were examined. The expression of p21WAF-1/ CIPI gene in transfected U251MG cell was examined by immunohistochemis-try staining. Results: The highest transfer rate of exogenous gene was 70% . After transfection with p21WAF-1/CIPI gene, the expression of WAF-1 increased remarkably and steadily; the growth of U251MG cells were inhibited evidently. FACS examination showed G1 arrest. The average apoptosis rate was 25.2%. Conclusion: GE7 system has the ability to transfer exogenous gene to targeted cells efficiently, and expression of p21WAF-1/CIPI gene can induce apoptosis of glioma cell and inhibit its growth.
基金supported by the Zhejiang Provincial Natural Science Foundation(LR23H180001)the Key Scientific and Technological Innovation Projects in Wenzhou(ZY2021002)+1 种基金Medical&Health Technology Program of Zhejiang Province(2022RC051)the Zhejiang Science and Technology Program of Traditional Chinese Medicine(2022ZB220).
文摘Posterior capsule opacification(PCO),the most common complication after cataract surgery,is caused by the proliferation,migration and epithelial-mesenchymal transition(EMT)of residual lens epithelial cells in the capsule bag.Although the surface modification and drug loading of intraocular lens(IOLs)have been effective in preventing PCO to some extent,the intraocular safety of anti-proliferative drug application is still a major limitation in clinical application.In this study,we used non-viral gene delivery systems in combination with layer-by-layer(LBL)self-assembly technology,and the modified IOL could effectively prevent the development of PCO by interfering with the EMT process mediated by the platelet-derived growth factor receptor-α(PDGFR-α).Herein,the gene fragments were wrapped by electrostatic conjugation using polyethyleneimine-graft-poly(ethylene glycol)to form gene complexes.Gene complexes were characterized by dynamic light scattering,transmission electron microscopy(TEM)and agarose gel electrophoresis,and evaluated for storage and serum stability.The layer assembly behavior of the IOL surface,changes in optical properties and the release behavior of the gene complexes were characterized using quartz crystal microbalance,UV-vis,contact angle and TEM.In vitro experiments showed that the IOL coating has good bio-compatibility and can achieve the corresponding transfection effect,and the released gene complexes exhibited excellent cell internalization and lysosomal escape behaviors,as well as effective inhibition of PDGFR-αexpression and its mediated EMT process.The early PCO prevention effect and bio-compatibility evaluation of the modified IOL in vivo were evaluated by implantation into animal eyes.This study provides a new strategy for the development of surface modifications of small nucleic acid drugs and non-toxic EMT interference therapies for PCO.
基金funding support from Department of Defense(Award Number:W81XWH-21-1-0048,USA)Department of Anesthesiology,Perioperative and Pain Medicine at the Brigham and Women's Hospital(USA)。
文摘Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases.Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route,while minimizing non-specific distribution in other organs.However,to date,only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases.Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches.We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs.We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections,chronic obstructive pulmonary diseases,acute lung injury,and lung cancer,list outstanding questions,and highlight directions for future research.We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
基金supported by the National Natural Science Foundation of China[32271464]the Hunan Provincial Natural Science Foundation for Distinguished Young Scholars[2022JJ10086]+4 种基金the Innovation-Driven Project of Central South University[2020CX048]the Joint Fund of the Hunan Provincial Natural Science Foundation and the Hunan Medical Products Adminstration[2023JJ60501]the Natural Science Foundation of Changsha[kq2202131]the Postgraduate Innovation Project of Central South University[2021zzts0977,2022ZZTS0980]the Hunan Provincial Innovation Foundation for Postgraduate[CX20210340,CX20220372].
文摘The emergence of the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)genome-editing system has brought about a significant revolution in the realm of managing human diseases,establishing animal models,and so on.To fully harness the potential of this potent gene-editing tool,ensuring efficient and secure delivery to the target site is paramount.Consequently,developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research.In this review,we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system.We also provide an indepth analysis of physical,viral vector,and non-viral vector delivery strategies,including plasmid-,mRNA-and protein-based approach.In addition,we illustrate the biomedical applications of the CRISPR/Cas9 system.This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system,while also delineating future directions and prospects that could inspire innovative delivery strategies.This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.
基金supported by the National Natural and Scientific Foundation of China (81602699 to Zhi-Yao He, 81502677 to Ke Men, 81402302 to Yang Yang)the National High Technology Research and Development Program of China (2015AA020309 to Zhi-Yao He)the China Postdoctoral Science Foundation Funded Project (2015M570791 to Zhi-Yao He)
文摘The clustered regularly interspaced short palindromic repeats(CRISPR)-associated protein 9(CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs(sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies.Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.
基金supported by the National Natural Science Foundation of China(No.51472115)Double Firstclass Innovation Team of China Pharmaceutical University(CPU2018GY40).
文摘Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity.Currently,gene therapy drugs such as siRNA,shRNA,antisense oligonucleotide,CRISPR/Cas9 system,plasmid DNA and miRNA have shown great potential in biomedical applications.To avoid the degradation of gene therapy drugs in the body and effectively deliver them to target tissues,cells and organelles,the development of excellent drug delivery vehicles is of utmost importance.Viral vectors are the most widely used delivery vehicles for gene therapy in vivo and in vitro due to their high transfection efficiency and stable transgene expression.With the development of nanotechnology,novel nanocarriers are gradually replacing viral vectors,emerging superior performance.This review mainly illuminates the current widely used gene therapy drugs,summarizes the viral vectors and non-viral vectors that deliver gene therapy drugs,and sums up the application of gene therapy to treat genetic diseases.Additionally,the challenges and opportunities of the field are discussed from the perspective of developing an effective nano-delivery system.
文摘Hepatocellular carcinoma(HCC) is the most common primary malignancy of the liver. It is the second leading cause of cancer-related deaths worldwide, with a very poor prognosis. In the United States, there has been only minimal improvement in the prognosis for HCC patients over the past 15 years. Details of the molecular mechanisms and other mechanisms of HCC progression remain unclear. Consequently, there is an urgent need for better understanding of these mechanisms. HCC is often diagnosed at advanced stages, and most patients will therefore need systemic therapy, with sorafenib being the most common at the present time. However, sorafenib therapy only minimally enhances patient survival. This review provides a summary of some of the known mechanisms that either cause HCC or contribute to its progression. Included in this review are the roles of viral hepatitis, non-viral hepatitis, chronic alcohol intake, genetic predisposition and congenital abnormalities, toxic exposures, and autoimmune diseases of the liver. Well-established molecular mechanisms of HCC progression such as epithelial-mesenchymal transition, tumor-stromal interactions and the tumor microenvironment, cancer stem cells, and senescence bypass are also discussed. Additionally, we discuss the roles of circulating tumor cells,immunomodulation, and neural regulation as potential new mechanisms of HCC progression. A better understanding of these mechanisms could have implications for the development of novel and more effective therapeutic and prognostic strategies, which are critically needed.
基金Supported by in part Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Sciences,No.26860354 to Kamimura K,No.16K19333 to Yokoo T,and No.26293175 to Terai S
文摘One of the major research focuses in the field of gene therapy is the development of clinically applicable, safe, and effective gene-delivery methods. Since the first case of human gene therapy was performed in 1990, a number of gene-delivery methods have been developed, evaluated for efficacy and safety, and modified for human application. To date, viral-vectormediated deliveries have shown effective therapeutic results. However, the risk of lethal immune response and carcinogenesis have been reported, and it is still controversial to be applied as a standard therapeutic option. On the other hand, delivery methods for nonviral vector systems have been developed, extensively studied, and utilized in in vivo gene-transfer studies. Compared to viral-vector mediated gene transfer, nonviral systems have less risk of biological reactions. However, the lower gene-transfer efficiency was a critical hurdle for applying them to human gene therapy. Among a number of nonviral vector systems, our studies focus on hydrodynamic gene delivery to utilize physical force to deliver naked DNA into the cells in the living animals. This method achieves a high gene-transfer level by DNA solution injections into the tail vein of rodents, especially in the liver. With the development of genome editing methods, in vivo gene-transfer therapy using this method is currently the focus in this research field. This review explains the method principle, efficiency, safety, and procedural modifications to achieve a high level of reproducibility in large-animal models.
基金supports from National Natural Science Foundation of China(No.50233020,30300086)the financial support from Natural Science Foundation of Tianjin(No.05YFJMJC10200).
文摘N-Methylene phosphonic chitosan (NMPCS), an amphiphilic macromolecule with powerful chelating ability of Ca^2+ ions, was synthesized and characterized. The physicochernical properties of NMPCS and the interactions between NMPCS and plasmid DNA were investigated by FTIR, ^13C NMR, X-ray, agarose gel electrophoresis retardation assay, atomic force microscopy (AFM) and circular dichroism (CD). The results suggest that at charge ratio 2:1 or above, DNA could be completely entrapped and spherical complexes with mean size of 80-210 nm were formed. Taking HeLa as host cell, luciferase expression mediated by NMPCS improved about 100 times compared to the expression mediated by chitosan.
基金financial support received from Centre of Research and Instrumentation (CRIM), Universiti Kebangsaan Malaysia
文摘Upon the discovery of RNA interference(RNAi),canonical small interfering RNA(si RNA) has been recognized to trigger sequence-specific gene silencing. Despite the benefits of si RNAs as potential new drugs,there are obstacles still to be overcome,including off-target effects and immune stimulation. More recently,Dicer substrate si RNA(Dsi RNA) has been introduced as an alternative to si RNA. Similarly,it also is proving to be potent and target-specific,while rendering less immune stimulation. Dsi RNA is 25–30 nucleotides in length,and is further cleaved and processed by the Dicer enzyme. As with si RNA,it is crucial to design and develop a stable,safe,and efficient system for the delivery of Dsi RNA into the cytoplasm of targeted cells. Several polymeric nanoparticle systems have been well established to load Dsi RNA for in vitro and in vivo delivery,thereby overcoming a major hurdle in the therapeutic uses of Dsi RNA. The present review focuses on a comparison of si RNA and Dsi RNA on the basis of their design,mechanism,in vitro and in vivo delivery,and therapeutics.
基金Funded by the National Natural Science Foundation of China(Nos.21204071,51273156)the Natural Science Foundation of Hubei Province(2014CFB833)the Innovation Research Fund of Wuhan university of Technology(20121049720006)
文摘A series of novel water soluble chitosan derivatives as gene vectors was synthesized. The delivery systems were tested for their ability to form complexes with plasmid DNA by utilizing agarose gel electrophoresis, particle size analysis, zeta potential measurement and scanning electron microscopy. Furthermore, cytotoxicity of chitosan derivatives and transfection efficiency of polyplexes were evaluated in vitro. The experimental results showed that the novel chitosan derivatives had lower cytotoxicity, good DNA condensation, and higher transfection efficiencies compared to chitosan in both 293T and HeLa cell lines. It was indicated that these chitosan derivatives were promising candidates for non-viral gene vectors.
基金a grant from the National Natural Sciences Foundation of China (No. 30670548).
文摘Objective: To investigate the feasibility of ultrasound (US) mediated enhanced green fluorescent protein (EGFP) gene delivery in subcutaneous transplanted tumors of human cervical carcinoma (He/a) and the contribution of lipid shell microbubble (LSMB) on gene transfection. Methods: LSMB and plasmid were injected into nude mice by tail vein followed local US irradiation (P + LSMB + US group). US exposure parameter was set at 2.0 W/cm2, 2 rain, duty cycle 20%. EGFP expression was evaluated by imaging for 7 days. Nude mice undergoing plasmid injection alone (P group), plasmid injection and US exposure (P + US group), plasmid and LSMB injection (P + LSMB group) were used as controls. Frozen section and histological examinations were conducted. Expression of EGFP was scored. Kinetics of protein expression post transfection and localization in vivo were evaluated. Results: Plasmid injection with LSMB plus US exposure strongly increased gene transfer efficiency. Strong EGFP expression was mainly seen in LSMB + P + US group. It was significantly higher than any of the following groups, P group, US + P group, or LSMB + P group (P 〈 0.01)./n vivo expression level of post-US 3 days was significantly higher than any other time points (P 〈 0.01). There was not significant expression level of EGFP in other organs or tissues regardless of US exposure. No tissue damage was seen histologically. Conclusion: The combination of LSMB and US exposure could effectively transfer plasmid DNA to transplanted tumors without causing any apparently adverse effect. LSMB could be effective as a non-viral vector system in in vivo gene delivery. It would be a safe gene delivery method and provide an alternative to current clinical gene therapy.
文摘Summary: To evaluate the feasibility of using polyethyleneimine (PEI) coated magnetic iron oxide nanoparticles (polyMAG-1000) as gene vectors. The surface characteristics of the nanoparticles were observed with scanning electron microscopy. The ability of the nanoparticles to combine with and protect DNA was investigated at different PH values after polyMAG-1000 and DNA were combined in different ratios. The nanoparticles were tested as gene vectors with in vitro transfection models. Under the scanning electron microscope the nanoparticles were about 100 nm in diameter. The nanoparticles could bind and condense DNA under acid, neutral and alkaline conditions, and they could transfer genes into cells and express green fluorescent proteins (GFP). The transfection efficiency was highest (51 %) when the ratio of nanoparticles to DNA was 1:1 (v:w). In that ratio, the difference in transfection efficiency was marked depending on whether a magnetic field was present or not: about 10 % when it was absent but 51 % when it was present. The magnetic iron oxide nanoparticles coated with PEI may potentially be used as gene vectors.