We adopt a dynamical algebraic method to study a four-level excited-doublet atom model and obtain the explicit expressions of the time-evolution operator and the density operator for the system. The nonclassical effec...We adopt a dynamical algebraic method to study a four-level excited-doublet atom model and obtain the explicit expressions of the time-evolution operator and the density operator for the system. The nonclassical effects of the system, such as collapses and revivals of the atomic inversion and squeezing of the radiation field, are also discussed.展开更多
In this paper,we investigate the photon correlations and the statistical properties of light produced by an optical cavity with an embedded quantum well interacting with squeezed light.We show that the squeezed source...In this paper,we investigate the photon correlations and the statistical properties of light produced by an optical cavity with an embedded quantum well interacting with squeezed light.We show that the squeezed source substantially improves the intensity of the emitted light and generates a narrowing and a duplication of the spectrum peaks.With a strong dependence on frequency detuning,the cavity produces considerably squeezed radiation,and perfect squeezing is predicted for weak light–matter interactions.Furthermore,the system under consideration presents a bunching effect of the transmitted radiation resulting from weak pumping of the coherent field.The results obtained may have potential applications in the fields of very accurate measurement and quantum computing.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10174066 and 10275055
文摘We adopt a dynamical algebraic method to study a four-level excited-doublet atom model and obtain the explicit expressions of the time-evolution operator and the density operator for the system. The nonclassical effects of the system, such as collapses and revivals of the atomic inversion and squeezing of the radiation field, are also discussed.
文摘In this paper,we investigate the photon correlations and the statistical properties of light produced by an optical cavity with an embedded quantum well interacting with squeezed light.We show that the squeezed source substantially improves the intensity of the emitted light and generates a narrowing and a duplication of the spectrum peaks.With a strong dependence on frequency detuning,the cavity produces considerably squeezed radiation,and perfect squeezing is predicted for weak light–matter interactions.Furthermore,the system under consideration presents a bunching effect of the transmitted radiation resulting from weak pumping of the coherent field.The results obtained may have potential applications in the fields of very accurate measurement and quantum computing.