The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of...The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.展开更多
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov...Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.展开更多
Sparse representation has been widely used in signal processing,pattern recognition and computer vision etc.Excellent achievements have been made in both theoretical researches and practical applications.However,there...Sparse representation has been widely used in signal processing,pattern recognition and computer vision etc.Excellent achievements have been made in both theoretical researches and practical applications.However,there are two limitations on the application of classification.One is that sufficient training samples are required for each class,and the other is that samples should be uncorrupted.In order to alleviate above problems,a sparse and dense hybrid representation(SDR)framework has been proposed,where the training dictionary is decomposed into a class-specific dictionary and a non-class-specific dictionary.SDR putsℓ1 constraint on the coefficients of class-specific dictionary.Nevertheless,it over-emphasizes the sparsity and overlooks the correlation information in class-specific dictionary,which may lead to poor classification results.To overcome this disadvantage,an adaptive sparse and dense hybrid representation with non-convex optimization(ASDR-NO)is proposed in this paper.The trace norm is adopted in class-specific dictionary,which is different from general approaches.By doing so,the dictionary structure becomes adaptive and the representation ability of the dictionary will be improved.Meanwhile,a non-convex surrogate is used to approximate the rank function in dictionary decomposition in order to avoid a suboptimal solution of the original rank minimization,which can be solved by iteratively reweighted nuclear norm(IRNN)algorithm.Extensive experiments conducted on benchmark data sets have verified the effectiveness and advancement of the proposed algorithm compared with the state-of-the-art sparse representation methods.展开更多
In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multiplie...In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multipliers (ADMM), is employed to solve such problems typically, which still requires the assumption of the gradient Lipschitz continuity condition on the objective function to ensure overall convergence from the current knowledge. However, many practical applications do not adhere to the conditions of smoothness. In this study, we justify the convergence of variant Bregman ADMM for the problem with coupling terms to circumvent the issue of the global Lipschitz continuity of the gradient. We demonstrate that the iterative sequence generated by our approach converges to a critical point of the issue when the corresponding function fulfills the Kurdyka-Lojasiewicz inequality and certain assumptions apply. In addition, we illustrate the convergence rate of the algorithm.展开更多
In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic r...In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic resonance imaging(MRI)reconstruction is proposed,which reconstructs the image from highly under-sampled k-space data.In the algorithm,the nonconvex surrogate function replacing the conventional nuclear norm is utilized to enhance the low-rank property inherent in the reconstructed image.An alternative direction multiplier method(ADMM) is applied to solving the resulting non-convex model.Extensive experimental results have demonstrated that the proposed method can consistently recover MRIs efficiently,and outperforms the current state-of-the-art approaches in terms of higher peak signal-to-noise ratio(PSNR) and lower high-frequency error norm(HFEN) values.展开更多
For solving minimization problems whose objective function is the sum of two functions without coupled variables and the constrained function is linear, the alternating direction method of multipliers (ADMM) has exh...For solving minimization problems whose objective function is the sum of two functions without coupled variables and the constrained function is linear, the alternating direction method of multipliers (ADMM) has exhibited its efficiency and its convergence is well understood. When either the involved number of separable functions is more than two, or there is a nonconvex function~ ADMM or its direct extended version may not converge. In this paper, we consider the multi-block sepa.rable optimization problems with linear constraints and absence of convexity of the involved component functions. Under the assumption that the associated function satisfies the Kurdyka- Lojasiewicz inequality, we prove that any cluster point of the iterative sequence generated by ADMM is a critical point, under the mild condition that the penalty parameter is sufficiently large. We also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.展开更多
A new algorithm is proposed for joint diagonalization. With a modified objective function, the new algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, ...A new algorithm is proposed for joint diagonalization. With a modified objective function, the new algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, with the new objective function, the proposed algorithm can work well in online blind source separation (BSS) for the first time, although this family of algorithms is always thought to be valid only in batch-mode BSS by far. Simulations show that it is a very competitive joint diagonalization algorithm.展开更多
Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are present...Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.展开更多
The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an u...The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an updating formula for the Lagrange multiplier without restricting its position for multiblock one.Then,combining with the Bregman distance,in this work,a Bregman-style partially symmetric ADMM is presented for nonconvex multi-block optimization with linear constraints,and the Lagrange multiplier is updated twice with different relaxation factors in the iteration scheme.Under the suitable conditions,the global convergence,strong convergence and convergence rate of the presented method are analyzed and obtained.Finally,some preliminary numerical results are reported to support the correctness of the theoretical assertions,and these show that the presented method is numerically effective.展开更多
This paper studies a class of nonconvex composite optimization, whose objective is a summation of an average of nonconvex(weakly) smooth functions and a convex nonsmooth function, where the gradient of the former func...This paper studies a class of nonconvex composite optimization, whose objective is a summation of an average of nonconvex(weakly) smooth functions and a convex nonsmooth function, where the gradient of the former function has the H o¨lder continuity. By exploring the structure of such kind of problems, we first propose a proximal(quasi-)Newton algorithm wPQN(Proximal quasi-Newton algorithm for weakly smooth optimization) and investigate its theoretical complexities to find an approximate solution. Then we propose a stochastic variant algorithm wPSQN(Proximal stochastic quasi-Newton algorithm for weakly smooth optimization), which allows a random subset of component functions to be used at each iteration. Moreover, motivated by recent success of variance reduction techniques, we propose two variance reduced algorithms,wPSQN-SVRG and wPSQN-SARAH, and investigate their computational complexity separately.展开更多
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel metho...The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.展开更多
In this paper, we propose an efficient adaptive iteratively reweighted l<sub>1</sub> algorithm (A-IRL1 algorithm) for solving the elastic l<sub>q</sub> regularization problem. We prove that the...In this paper, we propose an efficient adaptive iteratively reweighted l<sub>1</sub> algorithm (A-IRL1 algorithm) for solving the elastic l<sub>q</sub> regularization problem. We prove that the sequence generated by the A-IRL1 algorithm is convergent for any rational and the limit is a critical point of the elastic l<sub>q</sub> regularization problem. Under certain conditions, we present an error bound for the limit point of convergent sequence.展开更多
This work explores a family of two-block nonconvex optimization problems subject to linear constraints.We first introduce a simple but universal Bregman-style improved alternating direction method of multipliers(ADMM)...This work explores a family of two-block nonconvex optimization problems subject to linear constraints.We first introduce a simple but universal Bregman-style improved alternating direction method of multipliers(ADMM)based on the iteration framework of ADMM and the Bregman distance.Then,we utilize the smooth performance of one of the components to develop a linearized version of it.Compared to the traditional ADMM,both proposed methods integrate a convex combination strategy into the multiplier update step.For each proposed method,we demonstrate the convergence of the entire iteration sequence to a unique critical point of the augmented Lagrangian function utilizing the powerful Kurdyka–Łojasiewicz property,and we also derive convergence rates for both the sequence of merit function values and the iteration sequence.Finally,some numerical results show that the proposed methods are effective and encouraging for the Lasso model.展开更多
This work is about a splitting method for solving a nonconvex nonseparable optimization problem with linear constraints,where the objective function consists of two separable functions and a coupled term.First,based o...This work is about a splitting method for solving a nonconvex nonseparable optimization problem with linear constraints,where the objective function consists of two separable functions and a coupled term.First,based on the ideas from Bregman distance and Peaceman–Rachford splitting method,the Bregman Peaceman–Rachford splitting method with different relaxation factors for the multiplier is proposed.Second,the global and strong convergence of the proposed algorithm are proved under general conditions including the region of the two relaxation factors as well as the crucial Kurdyka–Łojasiewicz property.Third,when the associated Kurdyka–Łojasiewicz property function has a special structure,the sublinear and linear convergence rates of the proposed algorithm are guaranteed.Furthermore,some preliminary numerical results are shown to indicate the effectiveness of the proposed algorithm.展开更多
Optimal operation of a compressor station is important since it accounts for 25%to 50%of a company’s total operating budget.In short-term management of a compressor station,handling demand uncertainty is important ye...Optimal operation of a compressor station is important since it accounts for 25%to 50%of a company’s total operating budget.In short-term management of a compressor station,handling demand uncertainty is important yet challenging.Previous studies either require precise information about the distribution of uncertain parameters or greatly simplify the compressor model.We build a two-stage robust optimization framework of power cost minimization in a natural gas compressor station with nonidentical compressors.In the first stage,decision variables are the ON/OFF state of each compressor and discharge pressure.The worst-case cost of the second stage is incorporated in the first stage.Firststage decision variables feasibility is discussed and proper feasibility cuts are also proposed for the first stage.We employ a piece-wise approximation and propose accelerate methods.Our numerical results highlight two advantages of robust approach when managing uncertainty in practical settings:(1)the feasibility of first-stage decision can be increased by up to 45%,and(2)the worst-case cost can be reduced by up to 25%compared with stochastic programming models.Furthermore,our numerical experiments show that the designed accelerate algorithm has time improvements of 1518.9%on average(3785.9%at maximum).展开更多
The l1 norm is the tight convex relaxation for the l0 norm and has been successfully applied for recovering sparse signals.However,for problems with fewer samples than required for accurate l1 recovery,one needs to ap...The l1 norm is the tight convex relaxation for the l0 norm and has been successfully applied for recovering sparse signals.However,for problems with fewer samples than required for accurate l1 recovery,one needs to apply nonconvex penalties such as lp norm.As one method for solving lp minimization problems,iteratively reweighted l1 minimization updates the weight for each component based on the value of the same component at the previous iteration.It assigns large weights on small components in magnitude and small weights on large components in magnitude.The set of the weights is not fixed,and it makes the analysis of this method difficult.In this paper,we consider a weighted l1 penalty with the set of the weights fixed,and the weights are assigned based on the sort of all the components in magnitude.The smallest weight is assigned to the largest component in magnitude.This new penalty is called nonconvex sorted l1.Then we propose two methods for solving nonconvex sorted l1 minimization problems:iteratively reweighted l1 minimization and iterative sorted thresholding,and prove that both methods will converge to a local minimizer of the nonconvex sorted l1 minimization problems.We also show that both methods are generalizations of iterative support detection and iterative hard thresholding,respectively.The numerical experiments demonstrate the better performance of assigning weights by sort compared to assigning by value.展开更多
This paper is concerned with convergence of stochastic gradient algorithms with momentum terms in the nonconvex setting.A class of stochastic momentum methods,including stochastic gradient descent,heavy ball and Neste...This paper is concerned with convergence of stochastic gradient algorithms with momentum terms in the nonconvex setting.A class of stochastic momentum methods,including stochastic gradient descent,heavy ball and Nesterov’s accelerated gradient,is analyzed in a general framework under mild assumptions.Based on the convergence result of expected gradients,the authors prove the almost sure convergence by a detailed discussion of the effects of momentum and the number of upcrossings.It is worth noting that there are not additional restrictions imposed on the objective function and stepsize.Another improvement over previous results is that the existing Lipschitz condition of the gradient is relaxed into the condition of H?lder continuity.As a byproduct,the authors apply a localization procedure to extend the results to stochastic stepsizes.展开更多
In this paper,we investigate dual problems for nonconvex set-valued vector optimization via abstract subdifferential.We first introduce a generalized augmented Lagrangian function induced by a coupling vector-valued f...In this paper,we investigate dual problems for nonconvex set-valued vector optimization via abstract subdifferential.We first introduce a generalized augmented Lagrangian function induced by a coupling vector-valued function for set-valued vector optimization problem and construct related set-valued dual map and dual optimization problem on the basic of weak efficiency,which used by the concepts of supremum and infimum of a set.We then establish the weak and strong duality results under this augmented Lagrangian and present sufficient conditions for exact penalization via an abstract subdifferential of the object map.Finally,we define the sub-optimal path related to the dual problem and show that every cluster point of this sub-optimal path is a primal optimal solution of the object optimization problem.In addition,we consider a generalized vector variational inequality as an application of abstract subdifferential.展开更多
In this paper,the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,where the nonconvex term is possibly nonsmooth.Their al...In this paper,the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,where the nonconvex term is possibly nonsmooth.Their algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function for better practical and theoretical performance.Moreover,the algorithm uses a easily checking rule to update the smoothing parameter to ensure that any accumulation point of the generated sequence is an(afne-scaled)Clarke stationary point of the original nonsmooth and nonconvex problem.Their experimental results indicate the effectiveness of the proposed algorithm.展开更多
The alternating direction method of multipliers(ADMM)has been extensively investigated in the past decades for solving separable convex optimization problems,and surprisingly,it also performs efficiently for nonconvex...The alternating direction method of multipliers(ADMM)has been extensively investigated in the past decades for solving separable convex optimization problems,and surprisingly,it also performs efficiently for nonconvex programs.In this paper,we propose a symmetric ADMM based on acceleration techniques for a family of potentially nonsmooth and nonconvex programming problems with equality constraints,where the dual variables are updated twice with different stepsizes.Under proper assumptions instead of the socalled Kurdyka-Lojasiewicz inequality,convergence of the proposed algorithm as well as its pointwise iteration-complexity are analyzed in terms of the corresponding augmented Lagrangian function and the primal-dual residuals,respectively.Performance of our algorithm is verified by numerical examples corresponding to signal processing applications in sparse nonconvex/convex regularized minimization.展开更多
基金supported by the Knut and Alice Wallenberg Foundationthe Swedish Foundation for Strategic Research+1 种基金the Swedish Research Councilthe National Natural Science Foundation of China(62133003,61991403,61991404,61991400)。
文摘The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.
基金Projects(61173122,61262032) supported by the National Natural Science Foundation of ChinaProjects(11JJ3067,12JJ2038) supported by the Natural Science Foundation of Hunan Province,China
文摘Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.
基金The work described in this paper was partially supported by the National Natural Science Foundation of China(Grant Nos.61673249,61703252)the Union Fund of National Natural Science Foundation of China(U1805263)the Research Project Supported by Shanxi Scholarship Council of China(2016-004).
文摘Sparse representation has been widely used in signal processing,pattern recognition and computer vision etc.Excellent achievements have been made in both theoretical researches and practical applications.However,there are two limitations on the application of classification.One is that sufficient training samples are required for each class,and the other is that samples should be uncorrupted.In order to alleviate above problems,a sparse and dense hybrid representation(SDR)framework has been proposed,where the training dictionary is decomposed into a class-specific dictionary and a non-class-specific dictionary.SDR putsℓ1 constraint on the coefficients of class-specific dictionary.Nevertheless,it over-emphasizes the sparsity and overlooks the correlation information in class-specific dictionary,which may lead to poor classification results.To overcome this disadvantage,an adaptive sparse and dense hybrid representation with non-convex optimization(ASDR-NO)is proposed in this paper.The trace norm is adopted in class-specific dictionary,which is different from general approaches.By doing so,the dictionary structure becomes adaptive and the representation ability of the dictionary will be improved.Meanwhile,a non-convex surrogate is used to approximate the rank function in dictionary decomposition in order to avoid a suboptimal solution of the original rank minimization,which can be solved by iteratively reweighted nuclear norm(IRNN)algorithm.Extensive experiments conducted on benchmark data sets have verified the effectiveness and advancement of the proposed algorithm compared with the state-of-the-art sparse representation methods.
文摘In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multipliers (ADMM), is employed to solve such problems typically, which still requires the assumption of the gradient Lipschitz continuity condition on the objective function to ensure overall convergence from the current knowledge. However, many practical applications do not adhere to the conditions of smoothness. In this study, we justify the convergence of variant Bregman ADMM for the problem with coupling terms to circumvent the issue of the global Lipschitz continuity of the gradient. We demonstrate that the iterative sequence generated by our approach converges to a critical point of the issue when the corresponding function fulfills the Kurdyka-Lojasiewicz inequality and certain assumptions apply. In addition, we illustrate the convergence rate of the algorithm.
基金National Natural Science Foundations of China(Nos.61362001,61365013,51165033)the Science and Technology Department of Jiangxi Province of China(Nos.20132BAB211030,20122BAB211015)+1 种基金the Jiangxi Advanced Projects for Postdoctoral Research Funds,China(o.2014KY02)the Innovation Special Fund Project of Nanchang University,China(o.cx2015136)
文摘In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic resonance imaging(MRI)reconstruction is proposed,which reconstructs the image from highly under-sampled k-space data.In the algorithm,the nonconvex surrogate function replacing the conventional nuclear norm is utilized to enhance the low-rank property inherent in the reconstructed image.An alternative direction multiplier method(ADMM) is applied to solving the resulting non-convex model.Extensive experimental results have demonstrated that the proposed method can consistently recover MRIs efficiently,and outperforms the current state-of-the-art approaches in terms of higher peak signal-to-noise ratio(PSNR) and lower high-frequency error norm(HFEN) values.
文摘For solving minimization problems whose objective function is the sum of two functions without coupled variables and the constrained function is linear, the alternating direction method of multipliers (ADMM) has exhibited its efficiency and its convergence is well understood. When either the involved number of separable functions is more than two, or there is a nonconvex function~ ADMM or its direct extended version may not converge. In this paper, we consider the multi-block sepa.rable optimization problems with linear constraints and absence of convexity of the involved component functions. Under the assumption that the associated function satisfies the Kurdyka- Lojasiewicz inequality, we prove that any cluster point of the iterative sequence generated by ADMM is a critical point, under the mild condition that the penalty parameter is sufficiently large. We also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.
基金supported partly by the Key Program of National Natural Science Foundation of China (U0635001U0835003)+3 种基金the National Natural Science Foundation of China (60505005 60674033 60774094)the Natural Science Fundof Guangdong Province (05006508).
文摘A new algorithm is proposed for joint diagonalization. With a modified objective function, the new algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, with the new objective function, the proposed algorithm can work well in online blind source separation (BSS) for the first time, although this family of algorithms is always thought to be valid only in batch-mode BSS by far. Simulations show that it is a very competitive joint diagonalization algorithm.
文摘Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.
基金supported by the National Natural Science Foundation of China (No.12171106)the Natural Science Foundation of Guangxi Province (No.2020GXNSFDA238017)。
文摘The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an updating formula for the Lagrange multiplier without restricting its position for multiblock one.Then,combining with the Bregman distance,in this work,a Bregman-style partially symmetric ADMM is presented for nonconvex multi-block optimization with linear constraints,and the Lagrange multiplier is updated twice with different relaxation factors in the iteration scheme.Under the suitable conditions,the global convergence,strong convergence and convergence rate of the presented method are analyzed and obtained.Finally,some preliminary numerical results are reported to support the correctness of the theoretical assertions,and these show that the presented method is numerically effective.
基金Supported by National Natural Science Foundation of China(Grant No.11871453)The Major Key Project of PCL(Grant No.PCL2022A05).
文摘This paper studies a class of nonconvex composite optimization, whose objective is a summation of an average of nonconvex(weakly) smooth functions and a convex nonsmooth function, where the gradient of the former function has the H o¨lder continuity. By exploring the structure of such kind of problems, we first propose a proximal(quasi-)Newton algorithm wPQN(Proximal quasi-Newton algorithm for weakly smooth optimization) and investigate its theoretical complexities to find an approximate solution. Then we propose a stochastic variant algorithm wPSQN(Proximal stochastic quasi-Newton algorithm for weakly smooth optimization), which allows a random subset of component functions to be used at each iteration. Moreover, motivated by recent success of variance reduction techniques, we propose two variance reduced algorithms,wPSQN-SVRG and wPSQN-SARAH, and investigate their computational complexity separately.
文摘The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.
文摘In this paper, we propose an efficient adaptive iteratively reweighted l<sub>1</sub> algorithm (A-IRL1 algorithm) for solving the elastic l<sub>q</sub> regularization problem. We prove that the sequence generated by the A-IRL1 algorithm is convergent for any rational and the limit is a critical point of the elastic l<sub>q</sub> regularization problem. Under certain conditions, we present an error bound for the limit point of convergent sequence.
基金the National Natural Science Foundation of China(Nos.12171106 and 72071202)the Natural Science Foundation of Guangxi Province(No.2020GXNSFDA238017)Key Laboratory of Mathematics and Engineering Applications,Ministry of Education.
文摘This work explores a family of two-block nonconvex optimization problems subject to linear constraints.We first introduce a simple but universal Bregman-style improved alternating direction method of multipliers(ADMM)based on the iteration framework of ADMM and the Bregman distance.Then,we utilize the smooth performance of one of the components to develop a linearized version of it.Compared to the traditional ADMM,both proposed methods integrate a convex combination strategy into the multiplier update step.For each proposed method,we demonstrate the convergence of the entire iteration sequence to a unique critical point of the augmented Lagrangian function utilizing the powerful Kurdyka–Łojasiewicz property,and we also derive convergence rates for both the sequence of merit function values and the iteration sequence.Finally,some numerical results show that the proposed methods are effective and encouraging for the Lasso model.
基金supported by the National Natural Science Foundation of China(No.12171106)the Natural Science Foundation of Guangxi Province(Nos.2020GXNSFDA238017 and 2018GXNSFFA281007).
文摘This work is about a splitting method for solving a nonconvex nonseparable optimization problem with linear constraints,where the objective function consists of two separable functions and a coupled term.First,based on the ideas from Bregman distance and Peaceman–Rachford splitting method,the Bregman Peaceman–Rachford splitting method with different relaxation factors for the multiplier is proposed.Second,the global and strong convergence of the proposed algorithm are proved under general conditions including the region of the two relaxation factors as well as the crucial Kurdyka–Łojasiewicz property.Third,when the associated Kurdyka–Łojasiewicz property function has a special structure,the sublinear and linear convergence rates of the proposed algorithm are guaranteed.Furthermore,some preliminary numerical results are shown to indicate the effectiveness of the proposed algorithm.
基金the support from the National Science Foundation of China(Grant 71822105)。
文摘Optimal operation of a compressor station is important since it accounts for 25%to 50%of a company’s total operating budget.In short-term management of a compressor station,handling demand uncertainty is important yet challenging.Previous studies either require precise information about the distribution of uncertain parameters or greatly simplify the compressor model.We build a two-stage robust optimization framework of power cost minimization in a natural gas compressor station with nonidentical compressors.In the first stage,decision variables are the ON/OFF state of each compressor and discharge pressure.The worst-case cost of the second stage is incorporated in the first stage.Firststage decision variables feasibility is discussed and proper feasibility cuts are also proposed for the first stage.We employ a piece-wise approximation and propose accelerate methods.Our numerical results highlight two advantages of robust approach when managing uncertainty in practical settings:(1)the feasibility of first-stage decision can be increased by up to 45%,and(2)the worst-case cost can be reduced by up to 25%compared with stochastic programming models.Furthermore,our numerical experiments show that the designed accelerate algorithm has time improvements of 1518.9%on average(3785.9%at maximum).
基金This work is partially supported by European Research Council,the National Natural Science Foundation of China(No.11201079)the Fundamental Research Funds for the Central Universities of China(Nos.20520133238 and 20520131169)the National Natural Science Foundation of United States(Nos.DMS-0748839 and DMS-1317602).
文摘The l1 norm is the tight convex relaxation for the l0 norm and has been successfully applied for recovering sparse signals.However,for problems with fewer samples than required for accurate l1 recovery,one needs to apply nonconvex penalties such as lp norm.As one method for solving lp minimization problems,iteratively reweighted l1 minimization updates the weight for each component based on the value of the same component at the previous iteration.It assigns large weights on small components in magnitude and small weights on large components in magnitude.The set of the weights is not fixed,and it makes the analysis of this method difficult.In this paper,we consider a weighted l1 penalty with the set of the weights fixed,and the weights are assigned based on the sort of all the components in magnitude.The smallest weight is assigned to the largest component in magnitude.This new penalty is called nonconvex sorted l1.Then we propose two methods for solving nonconvex sorted l1 minimization problems:iteratively reweighted l1 minimization and iterative sorted thresholding,and prove that both methods will converge to a local minimizer of the nonconvex sorted l1 minimization problems.We also show that both methods are generalizations of iterative support detection and iterative hard thresholding,respectively.The numerical experiments demonstrate the better performance of assigning weights by sort compared to assigning by value.
基金supported by the National Natural Science Foundation of China (Nos. 11631004,12031009)the National Key R&D Program of China (No. 2018YFA0703900)。
文摘This paper is concerned with convergence of stochastic gradient algorithms with momentum terms in the nonconvex setting.A class of stochastic momentum methods,including stochastic gradient descent,heavy ball and Nesterov’s accelerated gradient,is analyzed in a general framework under mild assumptions.Based on the convergence result of expected gradients,the authors prove the almost sure convergence by a detailed discussion of the effects of momentum and the number of upcrossings.It is worth noting that there are not additional restrictions imposed on the objective function and stepsize.Another improvement over previous results is that the existing Lipschitz condition of the gradient is relaxed into the condition of H?lder continuity.As a byproduct,the authors apply a localization procedure to extend the results to stochastic stepsizes.
基金supported by National Science Foundation of China(No.11401487)the Education Department of Shaanxi Province(No.17JK0330)+1 种基金the Fundamental Research Funds for the Central Universities(No.300102341101)State Key Laboratory of Rail Transit Engineering Informatization(No.211934210083)。
文摘In this paper,we investigate dual problems for nonconvex set-valued vector optimization via abstract subdifferential.We first introduce a generalized augmented Lagrangian function induced by a coupling vector-valued function for set-valued vector optimization problem and construct related set-valued dual map and dual optimization problem on the basic of weak efficiency,which used by the concepts of supremum and infimum of a set.We then establish the weak and strong duality results under this augmented Lagrangian and present sufficient conditions for exact penalization via an abstract subdifferential of the object map.Finally,we define the sub-optimal path related to the dual problem and show that every cluster point of this sub-optimal path is a primal optimal solution of the object optimization problem.In addition,we consider a generalized vector variational inequality as an application of abstract subdifferential.
基金supported by the National Natural Science Foundation of China(No.12001144)Zhejiang Provincial Natural Science Foundation of China(No.LQ20A010007)NSF/DMS-2152961。
文摘In this paper,the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,where the nonconvex term is possibly nonsmooth.Their algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function for better practical and theoretical performance.Moreover,the algorithm uses a easily checking rule to update the smoothing parameter to ensure that any accumulation point of the generated sequence is an(afne-scaled)Clarke stationary point of the original nonsmooth and nonconvex problem.Their experimental results indicate the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.12001430,11801455,11971238)by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012405)+4 种基金by the Shanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSQ001)by the Sichuan Science and Technology Program(Grant No.2023NSFSC1922)by the Innovation Team Funds of China West Normal University(Grant No.KCXTD2023-3)by the Fundamental Research Funds of China West Normal University(Grant No.23kc010)by the Open Project of Key Laboratory(Grant No.CSSXKFKTM202004),School of Mathematical Sciences,Chongqing Normal University.
文摘The alternating direction method of multipliers(ADMM)has been extensively investigated in the past decades for solving separable convex optimization problems,and surprisingly,it also performs efficiently for nonconvex programs.In this paper,we propose a symmetric ADMM based on acceleration techniques for a family of potentially nonsmooth and nonconvex programming problems with equality constraints,where the dual variables are updated twice with different stepsizes.Under proper assumptions instead of the socalled Kurdyka-Lojasiewicz inequality,convergence of the proposed algorithm as well as its pointwise iteration-complexity are analyzed in terms of the corresponding augmented Lagrangian function and the primal-dual residuals,respectively.Performance of our algorithm is verified by numerical examples corresponding to signal processing applications in sparse nonconvex/convex regularized minimization.