This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapun...This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov expo- nents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k are studied. An effective nonlinear feedback control method is used to suppress hyperchaos to unstable equilibrium. Furthermore, a circuit is designed to realize this new hyperchaotic system by electronic workbench (EWB). Numerical simulations are presented to show these results.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is p...A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC).展开更多
This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the ...This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.展开更多
The problem of control of orbit for the dynamic system x ¨+x(1-x)(x-a)=0 is discussed. Any unbounded orbit of the dynamic system can be controlled to become a bounded periodic orbit by adding a periodic step ex...The problem of control of orbit for the dynamic system x ¨+x(1-x)(x-a)=0 is discussed. Any unbounded orbit of the dynamic system can be controlled to become a bounded periodic orbit by adding a periodic step excitation to the system. By using a nonlinear feedback control law presented in this paper the chaos of the dynamic system with excitation and damping is stabilized. This method is more effectual than the linear feedback control.展开更多
This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial mul...This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial multiplier skill, the authors show that, corresponding to the different values of the parameters involved in the nonlinear locally distributed feedback control, the energy of the beam under the proposed feedback decays exponentially or in negative power of time t as t →∞.展开更多
To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic array...To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.展开更多
This paper addresses the composite nonlinear feedback(CNF) control for a class of singleinput single-output nonlinear systems with input saturation to track a time varying reference target with good transient perfor...This paper addresses the composite nonlinear feedback(CNF) control for a class of singleinput single-output nonlinear systems with input saturation to track a time varying reference target with good transient performance. The CNF control law consists of a tracking control law and a performance compensator. The tracking control law is designed to drive the output of the system to track the time varying reference target rapidly, while the performance compensator is used to reduce the overshoot caused by the tracking control law. The stability of the closed-loop system is established. The design procedure and the improvement of transient performance of the closed-loop system are illustrated with a numerical example and the controlled Van del Pol oscillator.展开更多
This paper studies the stabilization problem of an Euler-Bernoulli beam with a tip mass,which undergoes unknown but uniform bounded disturbance at tip mass. Here the nonlinear feedback control law is used to cancel th...This paper studies the stabilization problem of an Euler-Bernoulli beam with a tip mass,which undergoes unknown but uniform bounded disturbance at tip mass. Here the nonlinear feedback control law is used to cancel the effects of the external disturbances. For the controlled nonlinear system,the authors prove the well-posedness by the maximal monotone operator theory and the variational principle. Further the authors prove that the controlled nonlinear system is exponential stable by constructing a suitable Lyapunov function. Finally, some numerical simulations are given to support these results.展开更多
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t...Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.展开更多
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 70571030 and 90610031)the Society Science Foundation from Ministry of Education of China (Grant No. 08JA790057)the Advanced Talents’ Foundation and Student’s Foundation of Jiangsu University (Grant Nos. 07JDG054 and 07A075)
文摘This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov expo- nents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k are studied. An effective nonlinear feedback control method is used to suppress hyperchaos to unstable equilibrium. Furthermore, a circuit is designed to realize this new hyperchaotic system by electronic workbench (EWB). Numerical simulations are presented to show these results.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金supported by the National Natural Science Foundation of China(11502288)
文摘A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC).
基金Project supported by the National Natural Science Foundation of China (Grant No 90405011), the Natural Science Foundation of Jiangsu Province, China (Grant No 05KJD120083) and the Natural Science Foundation of Nanjing Institute of Technology, China (Grant No KXJ06047).
文摘This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.
文摘The problem of control of orbit for the dynamic system x ¨+x(1-x)(x-a)=0 is discussed. Any unbounded orbit of the dynamic system can be controlled to become a bounded periodic orbit by adding a periodic step excitation to the system. By using a nonlinear feedback control law presented in this paper the chaos of the dynamic system with excitation and damping is stabilized. This method is more effectual than the linear feedback control.
基金This research is supported by the National Science Foundation of China under Grant Nos. 10671166 and 60673101.
文摘This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial multiplier skill, the authors show that, corresponding to the different values of the parameters involved in the nonlinear locally distributed feedback control, the energy of the beam under the proposed feedback decays exponentially or in negative power of time t as t →∞.
基金Supported by the National Natural Science Foundation of China (60674052)
文摘To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.
基金supported by the National Nature Science Foundation of China under Grant Nos.61374035 and 61733017
文摘This paper addresses the composite nonlinear feedback(CNF) control for a class of singleinput single-output nonlinear systems with input saturation to track a time varying reference target with good transient performance. The CNF control law consists of a tracking control law and a performance compensator. The tracking control law is designed to drive the output of the system to track the time varying reference target rapidly, while the performance compensator is used to reduce the overshoot caused by the tracking control law. The stability of the closed-loop system is established. The design procedure and the improvement of transient performance of the closed-loop system are illustrated with a numerical example and the controlled Van del Pol oscillator.
基金supported by the Natural Science Foundation of China under Grant Nos.61174080,61573252,and 61503275
文摘This paper studies the stabilization problem of an Euler-Bernoulli beam with a tip mass,which undergoes unknown but uniform bounded disturbance at tip mass. Here the nonlinear feedback control law is used to cancel the effects of the external disturbances. For the controlled nonlinear system,the authors prove the well-posedness by the maximal monotone operator theory and the variational principle. Further the authors prove that the controlled nonlinear system is exponential stable by constructing a suitable Lyapunov function. Finally, some numerical simulations are given to support these results.
基金National Science Fund for Distinguished Young Scholars (50825502)
文摘Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.