期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
1
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
下载PDF
Robust Adaptive Gain Higher Order Sliding Mode Observer Based Control-constrained Nonlinear Model Predictive Control for Spacecraft Formation Flying 被引量:9
2
作者 Ranjith Ravindranathan Nair Laxmidhar Behera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期367-381,共15页
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher... This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach. 展开更多
关键词 Adaptive gain higher order sliding mode observer leader-follower formation nonlinear model predictive control spacecraft formation flying tracking control
下载PDF
Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system 被引量:2
3
作者 Lukuan Yang Wenqi Zhong +2 位作者 Li Sun Xi Chen Yingjuan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期832-845,共14页
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W... Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems. 展开更多
关键词 Wet limestone flue gas desulphurization(WFGD)system modelING nonlinear model predictive control(NMPC) Multi-objective optimization
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
4
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 Support vector machine Genetic algorithm nonlinear model predictive control Neural network modeling
下载PDF
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network
5
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
下载PDF
Boiler-turbine control system design using continuous-time nonlinear model predictive control
6
作者 卓旭升 周怀春 《Journal of Chongqing University》 CAS 2008年第2期113-118,共6页
A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximate... A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range. 展开更多
关键词 nonlinear control system boiler control boiler-turbine unit nonlinear model predictive control reference governor generic model control
下载PDF
Nonlinear model predictive control with guaranteed stability based on pseudolinear neural networks
7
作者 WANGYongji WANGHong 《Journal of Chongqing University》 CAS 2004年第1期26-29,共4页
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ... A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems. 展开更多
关键词 pseudolinear neural networks (PNN) nonlinear model predictive control continuous stirred tank reactor (CSTR) asymptotic stability
下载PDF
Pre-compensation of Friction for CNC Machine Tools through Constructing a Nonlinear Model Predictive Scheme
8
作者 Qunbao Xiao Min Wan Xuebin Qin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期62-76,共15页
Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive... Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%. 展开更多
关键词 nonlinear model predictive control Friction compensation P-PI controller Stribeck model
下载PDF
SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control 被引量:12
9
作者 钟伟民 何国龙 +1 位作者 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期373-379,共7页
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identifica... A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function
下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
10
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
下载PDF
Nonlinear model predictive control with relevance vector regression and particle swarm optimization 被引量:6
11
作者 M.GERMIN NISHA G.N.PILLAI 《控制理论与应用(英文版)》 EI CSCD 2013年第4期563-569,共7页
In this paper, a nonlinear model predictive control strategy which utilizes a probabilistic sparse kernel learning technique called relevance vector regression (RVR) and particle swarm optimization with controllable... In this paper, a nonlinear model predictive control strategy which utilizes a probabilistic sparse kernel learning technique called relevance vector regression (RVR) and particle swarm optimization with controllable random exploration velocity (PSO-CREV) is applied to a catalytic continuous stirred tank reactor (CSTR) process. An accurate reliable nonlinear model is first identified by RVR with a radial basis function (RBF) kernel and then the optimization of control sequence is speeded up by PSO-CREV. Additional stochastic behavior in PSO-CREV is omitted for faster convergence of nonlinear optimization. An improved system performance is guaranteed by an accurate sparse predictive model and an efficient and fast optimization algorithm. To compare the performance, model predictive control (MPC) using a deterministic sparse kernel learning technique called Least squares support vector machines (LS-SVM) regression is done on a CSTR. Relevance vector regression shows improved tracking performance with very less computation time which is much essential for real time control. 展开更多
关键词 Relevance vector regression Least squares support vector machines nonlinear model predictive control Particle swarm optimization with controllable random exploration velocity
原文传递
Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines 被引量:5
12
作者 Qing-chao WANG Jian-zhong ZHANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第1期25-35,共11页
This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed ... This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM).Input-output data from the first principle model of the pH neutralization process are used for the Wiener model identification.Simulation results show that the proposed Wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) Wiener models,Laguerre-polynomial Wiener models,and linear Laguerre models.The identified Wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process.The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR Wiener model based NMPC,Laguerre-polynomial Wiener model based NMPC,and linear model predictive control (LMPC).Validation results show that the proposed NMPC outperforms the other three controllers. 展开更多
关键词 Wiener model nonlinear model predictive control (NMPC) pH neutralization process Laguerre filters Least squares support vector machines (LSSVM)
原文传递
A double-layered nonlinear model predictive control based control algorithm for local trajectory planning for automated trucks under uncertain road adhesion coefficient conditions 被引量:1
13
作者 Hong-chao WANG Wei-wei ZHANG +3 位作者 Xun-cheng WU Hao-tian CAO Qiao-ming GAO Su-yun LUO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第7期1059-1073,共15页
We present a double-layered control algorithm to plan the local trajectory for automated trucks equipped with four hub motors. The main layer of the proposed control algorithm consists of a main layer nonlinear model ... We present a double-layered control algorithm to plan the local trajectory for automated trucks equipped with four hub motors. The main layer of the proposed control algorithm consists of a main layer nonlinear model predictive control(MLN-MPC) controller and a secondary layer nonlinear MPC(SLN-MPC) controller. The MLN-MPC controller is applied to plan a dynamically feasible trajectory, and the SLN-MPC controller is designed to limit the longitudinal slip of wheels within a stable zone to avoid the tire excessively slipping during traction. Overall, this is a closed-loop control system. Under the off-line co-simulation environments of AMESim, Simulink, dSPACE, and TruckSim, a dynamically feasible trajectory with collision avoidance operation can be generated using the proposed method, and the longitudinal wheel slip can be constrained within a stable zone so that the driving safety of the truck can be ensured under uncertain road surface conditions. In addition, the stability and robustness of the method are verified by adding a driver model to evaluate the application in the real world. Furthermore, simulation results show that there is lower computational cost compared with the conventional PID-based control method. 展开更多
关键词 Automated truck Trajectory planning nonlinear model predictive control Longitudinal slip
原文传递
Reduced precision solution criteria for nonlinear model predictive control with the feasibility-perturbed sequential quadratic programming algorithm 被引量:1
14
作者 Jiao-na WAN Zhi-jiang SHAO Ke-xin WAN Xue-yi FANG Zhi-qiang WANG Ji-xin QIAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第11期919-931,共13页
We propose a novel kind of termination criteria, reduced precision solution (RPS) criteria, for solving optimal control problems (OCPs) in nonlinear model predictive control (NMPC), which should be solved quickly for ... We propose a novel kind of termination criteria, reduced precision solution (RPS) criteria, for solving optimal control problems (OCPs) in nonlinear model predictive control (NMPC), which should be solved quickly for new inputs to be applied in time. Computational delay, which may destroy the closed-loop stability, usually arises while non-convex and nonlinear OCPs are solved with differential equations as the constraints. Traditional termination criteria of optimization algorithms usually involve slow convergence in the solution procedure and waste computing resources. Considering the practical demand of solution precision, RPS criteria are developed to obtain good approximate solutions with less computational cost. These include some indices to judge the degree of convergence during the optimization procedure and can stop iterating in a timely way when there is no apparent improvement of the solution. To guarantee the feasibility of iterate for the solution procedure to be terminated early, the feasibility- perturbed sequential quadratic programming (FP-SQP) algorithm is used. Simulations on the reference tracking performance of a continuously stirred tank reactor (CSTR) show that the RPS criteria efficiently reduce computation time and the adverse effect of computational delay on closed-loop stability. 展开更多
关键词 nonlinear model predictive control (NMPC) Computational delay Termination criteria Continuously stirred tankreactor (CSTR)
原文传递
Nonlinear Model Predictive Control-Based Guidance Algorithm for Quadrotor Trajectory Tracking with Obstacle Avoidance
15
作者 ZHAO Chunhui WANG Dong +1 位作者 HU Jinwen PAN Quan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第4期1379-1400,共22页
This paper studies a novel trajectory tracking guidance law for a quadrotor unmanned aerial vehicle(UAV)with obstacle avoidance based on nonlinear model predictive control(NMPC)scheme.By augmenting a reference positio... This paper studies a novel trajectory tracking guidance law for a quadrotor unmanned aerial vehicle(UAV)with obstacle avoidance based on nonlinear model predictive control(NMPC)scheme.By augmenting a reference position trajectory to a reference dynamical system,the authors formulate the tracking problem as a standard NMPC design problem to generate constrained reference velocity commands for autopilots.However,concerning the closed-loop stability,it is difficult to find a local static state feedback to construct the terminal constraint in the design of NMPC-based guidance law.In order to circumvent this issue,the authors introduce a contraction constraint as a stability constraint,which borrows the ideas from the Lyapunov’s direct method and the backstepping technique.To achieve the obstacle avoidance extension,the authors impose a well-designed potential field function-based penalty term on the performance index.Considering the practical application,the heavy computational burden caused by solving the NMPC optimization problem online is alleviated by using the dynamical adjustment of the prediction horizon for the real-time control.Finally,extensive simulations and the real experiment are given to demonstrate the effectiveness of the proposed NMPC scheme. 展开更多
关键词 BACKSTEPPING input constraints nonlinear model predictive control obstacle avoidance quadrotor UAV trajectory tracking
原文传递
Application of Nonlinear Predictive Control Based on RBF Network Predictive Model in MCFC Plant
16
作者 陈跃华 曹广益 朱新坚 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第1期42-46,52,共6页
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t... This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely. 展开更多
关键词 molten carbonate fuel cell (MCFC) radial basis function (RBF)neural network model nonlinear model predictive control (NMPC) golden mean method
下载PDF
A Quantum-behaved Pigeon-Inspired Optimization approach to Explicit Nonlinear Model Predictive Controller for quadrotor
17
作者 Ning Xian Zhilong Chen 《International Journal of Intelligent Computing and Cybernetics》 EI 2018年第1期47-63,共17页
Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/appro... Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/approach–The paper deduces the nonlinear model of the quadrotor and uses the ENMPC to track the trajectory.Since the ENMPC has high demand for the state equation,the trajectory needed to be differentiated many times.When the trajectory is complicate or discontinuous,QPIO is proposed to linearize the trajectory.Then the linearized trajectory will be used in the ENMPC.Findings–Applying the QPIO algorithm allows the unequal distance sample points to be acquired to linearize the trajectory.Comparing with the equidistant linear interpolation,the linear interpolation error will be smaller.Practical implications–Small-sized quadrotors were adopted in this research to simplify the model.The model is supposed to be accurate and differentiable to meet the requirements of ENMPC.Originality/value–Traditionally,the quadrotor model was usually linearized in the research.In this paper,the quadrotormodel waskept nonlinear and the trajectorywill be linearizedinstead.Unequaldistance sample points were utilized to linearize the trajectory.In this way,the authors can get a smaller interpolation error.This method can also be applied to discrete systems to construct the interpolation for trajectory tracking. 展开更多
关键词 Explicit nonlinear model predictive controller Linearized trajectory Quantum-behaved Pigeon-Inspired Optimization
原文传递
A Composite Model Predictive Control Strategy for Furnaces
18
作者 臧灏 李宏光 +1 位作者 黄静雯 王佳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期788-794,共7页
Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consum... Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control(CMPC)strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The controllers connected with two kinds of communication networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reasonable CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively. 展开更多
关键词 FURNACE Tracking nonlinear model predictive control Economic nonlinear model predictive control Distributed model predictive control
下载PDF
Nonlinear Model Algorithmic Control of a pH Neutralization Process 被引量:11
19
作者 邹志云 于蒙 +4 位作者 王志甄 刘兴红 郭宇晴 张风波 郭宁 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期395-400,共6页
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea... Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors. 展开更多
关键词 model algorithmic control nonlinear model predictive control Hammerstein model pH neutralization process control simulation
下载PDF
GA-Based Model Predictive Control of Semi-Active Landing Gear 被引量:3
20
作者 WU Dong-su GU Hong-bin LIU Hui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期47-54,共8页
Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Pred... Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Predictive Control algorithm (NMPC) for semi-active landing gears is developed in this paper. The NMPC algorithm uses Genetic Algorithm (GA) as the optimization technique and chooses damping performance of landing gear at touch down to be the optimization object. The valve's rate and magnitude limitations are also considered in the controller's design. A simulation model is built for the semi-active landing gear's damping process at touchdown. Drop tests are carried out on an experimental passive landing gear systerm to validate the parameters of the simulation model. The result of numerical simulation shows that the isolation of impact load at touchdown can be significantly improved compared to other control algorithms. The strongly nonlinear dynamics of semi-active landing gear coupled with control valve's rate and magnitude limitations are handled well with the proposed controller. 展开更多
关键词 landing gear semi-active control nonlinear model predictive control impact load genetic algorithm
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部