The symmetry constraint and binary nonlinearization of Lax pairs for the super classical-Boussinesq hierarchy is obtained. Under the obtained symmetry constraint, the n-th flow of the super classical-Boussinesq hierar...The symmetry constraint and binary nonlinearization of Lax pairs for the super classical-Boussinesq hierarchy is obtained. Under the obtained symmetry constraint, the n-th flow of the super classical-Boussinesq hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
In this paper,the translation of the Lax pairs of the Levi equations is pre- sented.Then a symmetry constraint for the Levi equations is given by means of binary nonlinearization method. The spatial part and the tempo...In this paper,the translation of the Lax pairs of the Levi equations is pre- sented.Then a symmetry constraint for the Levi equations is given by means of binary nonlinearization method. The spatial part and the temporal parts of the translated Lax pairs and its adjoint Lax pairs of the Levi equations are all constrainted as finite dimensional Liouville integrable Hamiltonian systems. Finally,the involutive solutions of the Levi equations are presented.展开更多
Under the Bargmann constrained condition, the spatial part of a new Lax pair of the higher order MkdV equation is nonlinearized to be a completely integrable system (R2N,dp^dq, H0=1/2F0)(F0= (^q,p) + (^p,p) + (p,q)2)....Under the Bargmann constrained condition, the spatial part of a new Lax pair of the higher order MkdV equation is nonlinearized to be a completely integrable system (R2N,dp^dq, H0=1/2F0)(F0= (^q,p) + (^p,p) + (p,q)2). While the nonlinearization of the time part leads to its N-involutive system (Fm).展开更多
An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super NLS-MKdV hierarchy. Under the obtained symmetry constraint, the n-th flow of th...An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super NLS-MKdV hierarchy. Under the obtained symmetry constraint, the n-th flow of the super NLS-MKdV hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold R4N|2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. Wit...In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. With the help of the presented method, several kinds of usual nonlinear random vibration systems are analyzed. The numerical results show that the mean square responses of the proposed approach are much closer to the exact solutions or Monte Carlo solutions, than that obtained from equivalent linearization method.展开更多
An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the sup...An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
By modifying the procedure of binary nonlinearization for the AKNS spectral problem and its adjoint spectral problem under an implicit symmetry constraint, we obtain a finite dimensional system from the Lax pair of th...By modifying the procedure of binary nonlinearization for the AKNS spectral problem and its adjoint spectral problem under an implicit symmetry constraint, we obtain a finite dimensional system from the Lax pair of the nonlinear Schrodinger equation. We show that this system is a completely integrable Hamiltonian system.展开更多
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm...With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design ...Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design of a vertical track nonlinear energy sink(VTNES)with zero linear stiffness in the vertical direction is proposed and realized for the first time.The motion differential equations of the VTNES coupled with a linear oscillator(LO)are established.With the strong nonlinearity considered of the VTNES,the steady-state response of the system is analyzed with the harmonic balance method(HBM),and the accuracy of the HBM is verified numerically.On this basis,the VTNES prototype is manufactured,and its nonlinear stiffness is identified.The damping effect and dynamic characteristics of the VTNES are studied theoretically and experimentally.The results show that the VTNES has better damping effects when strong modulation responses(SMRs)occur.Moreover,even for small-amplitude vibration,the VTNES also has a good vibration suppression effect.To sum up,in order to suppress the vertical vibration,an NES is designed and developed,which can suppress the vertical vibration within certain ranges of the resonance frequency and the vibration intensity.展开更多
Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau...Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e...Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm...Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.展开更多
Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to e...Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61072147 and 11071159)the Natural Science Foundation of Shanghai,China (Grant No.09ZR1410800)+2 种基金the Science Foundation of the Key Laboratory of Mathematics Mechanization,China (Grant No.KLMM0806)the Shanghai Leading Academic Discipline Project,China (Grant No.J50101)the Key Disciplines of Shanghai Municipality of China (Grant No.S30104)
文摘The symmetry constraint and binary nonlinearization of Lax pairs for the super classical-Boussinesq hierarchy is obtained. Under the obtained symmetry constraint, the n-th flow of the super classical-Boussinesq hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.
文摘In this paper,the translation of the Lax pairs of the Levi equations is pre- sented.Then a symmetry constraint for the Levi equations is given by means of binary nonlinearization method. The spatial part and the temporal parts of the translated Lax pairs and its adjoint Lax pairs of the Levi equations are all constrainted as finite dimensional Liouville integrable Hamiltonian systems. Finally,the involutive solutions of the Levi equations are presented.
文摘Under the Bargmann constrained condition, the spatial part of a new Lax pair of the higher order MkdV equation is nonlinearized to be a completely integrable system (R2N,dp^dq, H0=1/2F0)(F0= (^q,p) + (^p,p) + (p,q)2). While the nonlinearization of the time part leads to its N-involutive system (Fm).
文摘An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super NLS-MKdV hierarchy. Under the obtained symmetry constraint, the n-th flow of the super NLS-MKdV hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold R4N|2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.
文摘In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. With the help of the presented method, several kinds of usual nonlinear random vibration systems are analyzed. The numerical results show that the mean square responses of the proposed approach are much closer to the exact solutions or Monte Carlo solutions, than that obtained from equivalent linearization method.
基金Project supported by the Hangdian Foundation (No. KYS075608072)the National Natural Science Foundation of China (Nos. 10671187, 10971109)the Program for New Century Excellent Talents in University of China (No. NCET-08-0515)
文摘An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.
基金Supported by the National Natural Science Foundation of China(No.11001069,61273077,11271210 and 10971109)Program for NCET under Grant No.NCET-08-0515Zhejiang Provincial Natural Science Foun-dation of China under Grant No.LQ12A01002 and LQ12A01003
文摘By modifying the procedure of binary nonlinearization for the AKNS spectral problem and its adjoint spectral problem under an implicit symmetry constraint, we obtain a finite dimensional system from the Lax pair of the nonlinear Schrodinger equation. We show that this system is a completely integrable Hamiltonian system.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China(No.12025204)the National Natural Science Foundation of China(No.12202038)。
文摘With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金the China National Funds for Distinguished Young Scholars(No.12025204)。
文摘Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design of a vertical track nonlinear energy sink(VTNES)with zero linear stiffness in the vertical direction is proposed and realized for the first time.The motion differential equations of the VTNES coupled with a linear oscillator(LO)are established.With the strong nonlinearity considered of the VTNES,the steady-state response of the system is analyzed with the harmonic balance method(HBM),and the accuracy of the HBM is verified numerically.On this basis,the VTNES prototype is manufactured,and its nonlinear stiffness is identified.The damping effect and dynamic characteristics of the VTNES are studied theoretically and experimentally.The results show that the VTNES has better damping effects when strong modulation responses(SMRs)occur.Moreover,even for small-amplitude vibration,the VTNES also has a good vibration suppression effect.To sum up,in order to suppress the vertical vibration,an NES is designed and developed,which can suppress the vertical vibration within certain ranges of the resonance frequency and the vibration intensity.
基金Fofinancially supported by the National Natural Science Foundation of China(Grant No.52271288)Peiyang Scholar Initiation Fund from Tianjin University。
文摘Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金financial support provided by the Future Energy System at University of Alberta and NSERC Discovery Grant RGPIN-2023-04084。
文摘Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金supported by the Australian Research Council(Grant No.DP210101292)the International Technology Center Indo-Pacific (ITC IPAC) via Army Research Office (contract FA520923C0023)。
文摘Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975118,52025121)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20210104)+1 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements of China(Grant No.BA2021023).
文摘Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.