The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of co...The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.展开更多
Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistic...Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.展开更多
Estimation of density and hazard rate is very important to the reliability analysis of a system. In order to estimate the density and hazard rate of a hazard rate monotonously decreasing system, a new nonparametric es...Estimation of density and hazard rate is very important to the reliability analysis of a system. In order to estimate the density and hazard rate of a hazard rate monotonously decreasing system, a new nonparametric estimator is put forward. The estimator is based on the kernel function method and optimum algorithm. Numerical experiment shows that the method is accurate enough and can be used in many cases.展开更多
This paper analyses the effect of censoring on the estimation of failure rate, and presents a framework of a censored nonparametric software reliability model. The model is based on nonparametric testing of failure ra...This paper analyses the effect of censoring on the estimation of failure rate, and presents a framework of a censored nonparametric software reliability model. The model is based on nonparametric testing of failure rate monotonically decreasing and weighted kernel failure rate estimation under the constraint of failure rate monotonically decreasing. Not only does the model have the advantages of little assumptions and weak constraints, but also the residual defects number of the software system can be estimated. The numerical experiment and real data analysis show that the model performs wdl with censored data.展开更多
Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteri...Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave.展开更多
The Contingent Valuation Method is used to evaluate individual preferences for a change concerning a public non-market resource or property. The objective is to build a nonparametric forecasting model of an individual...The Contingent Valuation Method is used to evaluate individual preferences for a change concerning a public non-market resource or property. The objective is to build a nonparametric forecasting model of an individual's Willingness To Pay according to geographical location. Within this framework, an estimator (of type Nadaraya-Watson) is proposed for the regression of the variable related to geolocation. The specific characteristics of the location variable lead us to a more general regression model than the traditional models. Results are established for convergence of our estimator.展开更多
Portfolio selection is an important issue in finance and it involves the balance between risk and return. This paper investigates portfolio selection under Mean-CVa R model in a nonparametric framework with α-mixing ...Portfolio selection is an important issue in finance and it involves the balance between risk and return. This paper investigates portfolio selection under Mean-CVa R model in a nonparametric framework with α-mixing data as financial data tends to be dependent. Many works have provided some insight into the performance of portfolio selection from the aspects of data and simulation while in this paper we concentrate on the asymptotic behaviors of the optimal solutions and risk estimation in theory.展开更多
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu...As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation.展开更多
Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this pape...Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this paper,an Archimedean copula is chosen to describe the dependence in a constant-stress accelerated life test.We study the Archimedean copula based dependent competing risks model using parametric and nonparametric methods.The parametric likelihood inference is presented by deriving the general expression of likelihood function based on assumed survival Archimedean copula associated with the model parameter estimation.Combining the nonparametric estimation with progressive censoring and the non-parametric copula estimation,we introduce a nonparametric reliability estimation method given competing risks data.A simulation study and a real data analysis are conducted to show the performance of the estimation methods.展开更多
As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this p...As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this paper.The forecasting output can be defined as energy saving control setting value of heating supply substation;meanwhile,it can also provide a practical basis for heating dispatching and peak load regulating operation.By means of the proposed approach,SVR model is used to point forecasting and the error interval can be gained by using nonparametric kernel estimation to the forecast error,which avoid the distributional assumptions.Combining the point forecasting results and error interval,the forecast confidence interval is obtained.Finally,the proposed model is performed through simulations by applying it to the data from a heating supply network in Harbin,and the results show that the method can meet the demands of energy saving control and heating dispatching.展开更多
Consider the nonparametric regression model Y=go(T)+u,where Y is real-valued, u is a random error,T ranges over a nondegenerate compact interval,say[0,1],and go(·)is an unknown regression function,which is m...Consider the nonparametric regression model Y=go(T)+u,where Y is real-valued, u is a random error,T ranges over a nondegenerate compact interval,say[0,1],and go(·)is an unknown regression function,which is m(m≥0)times continuously differentiable and its ruth derivative,g<sub>0</sub><sup>(m)</sup>,satisfies a H■lder condition of order γ(m +γ】1/2).A piecewise polynomial L<sub>1</sub>- norm estimator of go is proposed.Under some regularity conditions including that the random errors are independent but not necessarily have a common distribution,it is proved that the rates of convergence of the piecewise polynomial L<sub>1</sub>-norm estimator are o(n<sup>-2(m+γ)+1/m+γ-1/δ</sup>almost surely and o(n<sup>-2(m+γ)+1/m+γ-δ</sup>)in probability,which can arbitrarily approach the optimal rates of convergence for nonparametric regression,where δ is any number in (0, min((m+γ-1/2)/3,γ)).展开更多
For the linear model y_i=x_iθ+e_i, i=1, 2,…, let the error sequence {e_i}_i=1 be iidr.v.’s, with unknown density f(x). In this paper,a nonparametric estimation method based onthe residuals is proposed for estimatin...For the linear model y_i=x_iθ+e_i, i=1, 2,…, let the error sequence {e_i}_i=1 be iidr.v.’s, with unknown density f(x). In this paper,a nonparametric estimation method based onthe residuals is proposed for estimating f(x) and the consistency of the estimators is obtained.展开更多
Nonparametric estimation of a survival function is one of the most commonly asked questions in the analysis of failure time data and for this, a number of procedures have been developed under various types of censorin...Nonparametric estimation of a survival function is one of the most commonly asked questions in the analysis of failure time data and for this, a number of procedures have been developed under various types of censoring structures (Kalbfleisch and Prentice, 2002). In particular, several algorithms are available for interval-censored failure time data with independent censoring mechanism (Sun, 2006; Turnbull, 1976). In this paper, we consider the interval-censored data where the censoring mechanism may be related to the failure time of interest, for which there does not seem to exist a nonparametric estimation procedure. It is well-known that with informative censoring, the estimation is possible only under some assumptions. To attack the problem, we take a copula model approach to model the relationship between the failure time of interest and censoring variables and present a simple nonparametric estimation procedure. The method allows one to conduct a sensitivity analysis among others.展开更多
This paper proposes a kernel estimator for the coefficient of multidimensional time-varying diffusion processes as an extension of the estimation model for one dimensional diffusion coefficient to the multidimensional...This paper proposes a kernel estimator for the coefficient of multidimensional time-varying diffusion processes as an extension of the estimation model for one dimensional diffusion coefficient to the multidimensional case.By using"time division",the authors overcome the problem of sample observation in time varying model.In addition,the authors prove the strong consistency and limit distribution of the estimator.Finally,the authors test the performance of the estimator through a simulation experiment and an empirical application.展开更多
This paper considers a nonparametric diffusion process whose drift and diffusion coefficients are nonparametric functions of the state variable.A two-step approach to estimate the drift function of a jump-diffusion mo...This paper considers a nonparametric diffusion process whose drift and diffusion coefficients are nonparametric functions of the state variable.A two-step approach to estimate the drift function of a jump-diffusion model in noisy settings is proposed.The proposed estimator is shown to be consistent and asymptotically normal in the presence of finite activity jumps.Simulated experiments and a real data application are undertaken to assess the finite sample performance of the newly proposed method.展开更多
In this paper,nonparametric estimation for a stationary strongly mixing and manifoldvalued process(X_(j))is considered.In this non-Euclidean and not necessarily i.i.d setting,we propose kernel density estimators of th...In this paper,nonparametric estimation for a stationary strongly mixing and manifoldvalued process(X_(j))is considered.In this non-Euclidean and not necessarily i.i.d setting,we propose kernel density estimators of the joint probability density function,of the conditional probability density functions and of the conditional expectations of functionals of X_(j)given the past behavior of the process.We prove the strong consistency of these estimators under sufficient conditions,and we illustrate their performance through simulation studies and real data analysis.展开更多
This paper deals with the conditional density estimator of a real response variable given a functional random variable(i.e.,takes values in an infinite-dimensional space).Specifically,we focus on the functional index ...This paper deals with the conditional density estimator of a real response variable given a functional random variable(i.e.,takes values in an infinite-dimensional space).Specifically,we focus on the functional index model,and this approach represents a good compromise between nonparametric and parametric models.Then we give under general conditions and when the variables are independent,the quadratic error and asymptotic normality of estimator by local linear method,based on the single-index structure.Finally,wecomplete these theoretical advances by some simulation studies showing both the practical result of the local linear method and the good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create functional pseudo-confidence area.展开更多
Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions...Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions and their derivatives in very general models,in which the unknown coefficient functions admit different or the same degrees of smoothness and the covariates can be time- dependent.The asymptotic properties of the estimators,such as consistency,rate of convergence and asymptotic distribution,are derived.The asymptotic results show that the asymptotic variance of the reducing component estimators is smaller than that of the existing estimators when the coefficient functions admit different degrees of smoothness.Finite sample properties of our procedures are studied through Monte Carlo simulations.展开更多
In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and ...In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.展开更多
The approximate correction of the additive white noise model in quantized Kalman filter is investigated under certain conditions. The probability density function of the error of quantized measurements is analyzed the...The approximate correction of the additive white noise model in quantized Kalman filter is investigated under certain conditions. The probability density function of the error of quantized measurements is analyzed theoretically and experimentally. The analysis is based on the probability theory and nonparametric density estimation technique, respectively. The approximator of probability density function of quantized measurement noise is given. The numerical results of nonparametric density estimation algorithm demonstrate that the theoretical conclusion is reasonable. Based on the analysis of quantization noise, a novel algorithm for state estimation with quantized measurements also is proposed. The algorithm is based on the least-squares estimator and unscented transform. By least-squares estimator, the effective information is extracted from the quantized measurements. Also, using the information to update the estimated state can give a better estimation under the influence of quantization. The root mean square error (RMSE) of the proposed algorithm is compared with the RMSE of the existing methods for a typical tracking scenario in wireless sensor networks systems. Simulations provide a strong evidence that this tracking algorithm could indeed give us a more precise estimated result.展开更多
基金Supported by the National Natural Science Foundation of China(12101004)the Natural Science Research Project of Anhui Educational Committee(2023AH030021)the Research Startup Foundation for Introducing Talent of Anhui Polytechnic University(2020YQQ064)。
文摘The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2009AA011204)
文摘Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.
文摘Estimation of density and hazard rate is very important to the reliability analysis of a system. In order to estimate the density and hazard rate of a hazard rate monotonously decreasing system, a new nonparametric estimator is put forward. The estimator is based on the kernel function method and optimum algorithm. Numerical experiment shows that the method is accurate enough and can be used in many cases.
文摘This paper analyses the effect of censoring on the estimation of failure rate, and presents a framework of a censored nonparametric software reliability model. The model is based on nonparametric testing of failure rate monotonically decreasing and weighted kernel failure rate estimation under the constraint of failure rate monotonically decreasing. Not only does the model have the advantages of little assumptions and weak constraints, but also the residual defects number of the software system can be estimated. The numerical experiment and real data analysis show that the model performs wdl with censored data.
基金This research was supported by the National Natural Science Foundation of China(No.42274141)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ007).
文摘Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave.
文摘The Contingent Valuation Method is used to evaluate individual preferences for a change concerning a public non-market resource or property. The objective is to build a nonparametric forecasting model of an individual's Willingness To Pay according to geographical location. Within this framework, an estimator (of type Nadaraya-Watson) is proposed for the regression of the variable related to geolocation. The specific characteristics of the location variable lead us to a more general regression model than the traditional models. Results are established for convergence of our estimator.
基金Supported by the Fundamental Research Funds for the Central UniversitiesMajor Project of the National Social Science Foundation of China(13&ZD163)Zhejiang Provincial Natural Science Foundation(LY13A010001 and LY17A010016)
文摘Portfolio selection is an important issue in finance and it involves the balance between risk and return. This paper investigates portfolio selection under Mean-CVa R model in a nonparametric framework with α-mixing data as financial data tends to be dependent. Many works have provided some insight into the performance of portfolio selection from the aspects of data and simulation while in this paper we concentrate on the asymptotic behaviors of the optimal solutions and risk estimation in theory.
基金Projects(61603393,61741318)supported in part by the National Natural Science Foundation of ChinaProject(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(2015M581885)supported by the Postdoctoral Science Foundation of ChinaProject(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
文摘As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation.
基金Supported by the National Natural Science Foundation of China(12101476,12061091,11901134)the Fundamental Research Funds for the Central Universities(ZYTS23054,QTZX22054)+1 种基金the Yunnan Funda-mental Research Projects(202101AT070103)the Natural Science Basic Research Program of Shaanxi Province(2020JQ-285).
文摘Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this paper,an Archimedean copula is chosen to describe the dependence in a constant-stress accelerated life test.We study the Archimedean copula based dependent competing risks model using parametric and nonparametric methods.The parametric likelihood inference is presented by deriving the general expression of likelihood function based on assumed survival Archimedean copula associated with the model parameter estimation.Combining the nonparametric estimation with progressive censoring and the non-parametric copula estimation,we introduce a nonparametric reliability estimation method given competing risks data.A simulation study and a real data analysis are conducted to show the performance of the estimation methods.
基金Sponsored by the National 11th 5-year Plan Key Project of Ministry of Science and Technology of China (Grant No.2006BAJ01A04)
文摘As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this paper.The forecasting output can be defined as energy saving control setting value of heating supply substation;meanwhile,it can also provide a practical basis for heating dispatching and peak load regulating operation.By means of the proposed approach,SVR model is used to point forecasting and the error interval can be gained by using nonparametric kernel estimation to the forecast error,which avoid the distributional assumptions.Combining the point forecasting results and error interval,the forecast confidence interval is obtained.Finally,the proposed model is performed through simulations by applying it to the data from a heating supply network in Harbin,and the results show that the method can meet the demands of energy saving control and heating dispatching.
基金Supported by the National Natural Science Foundation of China.
文摘Consider the nonparametric regression model Y=go(T)+u,where Y is real-valued, u is a random error,T ranges over a nondegenerate compact interval,say[0,1],and go(·)is an unknown regression function,which is m(m≥0)times continuously differentiable and its ruth derivative,g<sub>0</sub><sup>(m)</sup>,satisfies a H■lder condition of order γ(m +γ】1/2).A piecewise polynomial L<sub>1</sub>- norm estimator of go is proposed.Under some regularity conditions including that the random errors are independent but not necessarily have a common distribution,it is proved that the rates of convergence of the piecewise polynomial L<sub>1</sub>-norm estimator are o(n<sup>-2(m+γ)+1/m+γ-1/δ</sup>almost surely and o(n<sup>-2(m+γ)+1/m+γ-δ</sup>)in probability,which can arbitrarily approach the optimal rates of convergence for nonparametric regression,where δ is any number in (0, min((m+γ-1/2)/3,γ)).
基金The project supported by National Natural Science Foundation of China Crant 18971061
文摘For the linear model y_i=x_iθ+e_i, i=1, 2,…, let the error sequence {e_i}_i=1 be iidr.v.’s, with unknown density f(x). In this paper,a nonparametric estimation method based onthe residuals is proposed for estimating f(x) and the consistency of the estimators is obtained.
基金Supported by the National Natural Science Foundation of China(Grant No.11301037,11671054,11671168)
文摘Nonparametric estimation of a survival function is one of the most commonly asked questions in the analysis of failure time data and for this, a number of procedures have been developed under various types of censoring structures (Kalbfleisch and Prentice, 2002). In particular, several algorithms are available for interval-censored failure time data with independent censoring mechanism (Sun, 2006; Turnbull, 1976). In this paper, we consider the interval-censored data where the censoring mechanism may be related to the failure time of interest, for which there does not seem to exist a nonparametric estimation procedure. It is well-known that with informative censoring, the estimation is possible only under some assumptions. To attack the problem, we take a copula model approach to model the relationship between the failure time of interest and censoring variables and present a simple nonparametric estimation procedure. The method allows one to conduct a sensitivity analysis among others.
基金supported by the National Natural Science Foundation of China under Grant Nos.11271189and 11201229。
文摘This paper proposes a kernel estimator for the coefficient of multidimensional time-varying diffusion processes as an extension of the estimation model for one dimensional diffusion coefficient to the multidimensional case.By using"time division",the authors overcome the problem of sample observation in time varying model.In addition,the authors prove the strong consistency and limit distribution of the estimator.Finally,the authors test the performance of the estimator through a simulation experiment and an empirical application.
基金the National Natural Science Foundation of China under Grant No.11961038Cultivating Project of National Natural Science Foundation(QianKeHe talent-development platform[2017]No.5723,QianKeHe talent-development platform[2017]No.5723-02)+7 种基金supported by the National Natural Science Foundation of China under Grant Nos.12071220,11701286supported by the National Natural Science Foundation of China under Grant Nos.11831008,11971235Young Talents Project of Science and Technology Research Program of Education Department in Guizhou Province(Qianjiao KYword[2018]364)Science and Technology Foundation of Guizhou Province(QianKeHejichu[2019]1286)Social Science Foundation of Jiangsu Province under Grant No.20EYC008the National Statistical Research Project of China under Grant No.2020LZ35the National Statistical Research Project of China under Grant No.2020LZ19Open Project of Jiangsu Key Laboratory of Financial Engineering under Grant No.NSK2021-12。
文摘This paper considers a nonparametric diffusion process whose drift and diffusion coefficients are nonparametric functions of the state variable.A two-step approach to estimate the drift function of a jump-diffusion model in noisy settings is proposed.The proposed estimator is shown to be consistent and asymptotically normal in the presence of finite activity jumps.Simulated experiments and a real data application are undertaken to assess the finite sample performance of the newly proposed method.
文摘In this paper,nonparametric estimation for a stationary strongly mixing and manifoldvalued process(X_(j))is considered.In this non-Euclidean and not necessarily i.i.d setting,we propose kernel density estimators of the joint probability density function,of the conditional probability density functions and of the conditional expectations of functionals of X_(j)given the past behavior of the process.We prove the strong consistency of these estimators under sufficient conditions,and we illustrate their performance through simulation studies and real data analysis.
文摘This paper deals with the conditional density estimator of a real response variable given a functional random variable(i.e.,takes values in an infinite-dimensional space).Specifically,we focus on the functional index model,and this approach represents a good compromise between nonparametric and parametric models.Then we give under general conditions and when the variables are independent,the quadratic error and asymptotic normality of estimator by local linear method,based on the single-index structure.Finally,wecomplete these theoretical advances by some simulation studies showing both the practical result of the local linear method and the good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create functional pseudo-confidence area.
基金Research Foundation for Doctor Programme (Grant No.20060254006)the National Natural Science Foundation of China (Grant No.10671089)
文摘Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions and their derivatives in very general models,in which the unknown coefficient functions admit different or the same degrees of smoothness and the covariates can be time- dependent.The asymptotic properties of the estimators,such as consistency,rate of convergence and asymptotic distribution,are derived.The asymptotic results show that the asymptotic variance of the reducing component estimators is smaller than that of the existing estimators when the coefficient functions admit different degrees of smoothness.Finite sample properties of our procedures are studied through Monte Carlo simulations.
基金supported by National Natural Science Foundation of China (Grant Nos.10871177,11071213)Research Fund for the Doctor Program of Higher Education of China (Grant No.20090101110020)
文摘In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.
基金supported by National Natural Science Foundation (No. 60935001, 60874104)973 Project (No. 2009CB824900, 2010CB734103)the Shanghai Key Basic Research Foundation (No. 08JC1411800)
文摘The approximate correction of the additive white noise model in quantized Kalman filter is investigated under certain conditions. The probability density function of the error of quantized measurements is analyzed theoretically and experimentally. The analysis is based on the probability theory and nonparametric density estimation technique, respectively. The approximator of probability density function of quantized measurement noise is given. The numerical results of nonparametric density estimation algorithm demonstrate that the theoretical conclusion is reasonable. Based on the analysis of quantization noise, a novel algorithm for state estimation with quantized measurements also is proposed. The algorithm is based on the least-squares estimator and unscented transform. By least-squares estimator, the effective information is extracted from the quantized measurements. Also, using the information to update the estimated state can give a better estimation under the influence of quantization. The root mean square error (RMSE) of the proposed algorithm is compared with the RMSE of the existing methods for a typical tracking scenario in wireless sensor networks systems. Simulations provide a strong evidence that this tracking algorithm could indeed give us a more precise estimated result.