In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical...In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.展开更多
In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously pe...In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it elimina...Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.展开更多
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom...The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.展开更多
In most wireless communication systems, two-dimensional Directions-Of-Arrival (DOA) of multipath signals need to be found for spatial selective transmission. However, it is quite difficult to find their DOAs due to th...In most wireless communication systems, two-dimensional Directions-Of-Arrival (DOA) of multipath signals need to be found for spatial selective transmission. However, it is quite difficult to find their DOAs due to the coherent nature of multipath signals and considerable computations when performing 2-D searches. In this paper, a new algorithm to estimate 2-D DOA of multiple narrow-band signals is proposed. A DOA cyclic matrix is constructed whose eigenvalues and eigenvectors can be simultaneously used to extract 2-D DOA without 2-D searches. By exploiting the temporal property of cyclostationarity, the signal detection capability is significantly improved. Besides, based on the decorrelation model for mobile terminal signals, the algorithm can be effectively extended to the coherent case without spatial smoothing and the loss of array aperture. Simulation results are given to illustrate the performance of the new algorithm.展开更多
In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noi...In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Extraction of buried correlated signals is achieved without averaging in the time or frequency domain.展开更多
In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct ti...In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements.展开更多
Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods dif...Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network(SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network(DFAWNet) is developed, which consists of fused wavelet convolution(FWConv), dynamic hard thresholding(DHT),index-based soft filtering(ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically;DHT dynamically eliminates noise-related components via point-wise hard thresholding;inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github. com/alber tszg/DFAWn et.展开更多
In this paper, the evaluation by running window smoothing is used for the digital processing of the polarization of geophysical ULF signals. The observed signals are resolved into two orthogonal complex components so ...In this paper, the evaluation by running window smoothing is used for the digital processing of the polarization of geophysical ULF signals. The observed signals are resolved into two orthogonal complex components so that it is no longer necessary to consider the phase and amplitude of the signals simultaneously.展开更多
When a pipe is partially filled with a given working liquid,the relationship between the electromotive force(EMF)measured by the sensor(flowmeter)and the average velocity is nonlinear and non-monotonic.This relationsh...When a pipe is partially filled with a given working liquid,the relationship between the electromotive force(EMF)measured by the sensor(flowmeter)and the average velocity is nonlinear and non-monotonic.This relationship varies with the inclination of the pipe,the fluid density,the pipe wall friction coefficient,and other factors.Therefore,existing measurement methods cannot meet the accuracy requirements of many industrial applications.In this study,a new processing method is proposed by which the flow rate can be measured with an ordinary electromagnetic flowmeter even if the pipe is only partially filled.First,a B-spline curve fitting method is applied to a limited set of measurements.Second,matrix inversion required in the B-spline curve method is optimized in order to reduce the number of needed computations.Dedicated experimental tests prove that the proposed method can effectively measure the average flow velocity of the fluid.When the fluid level of the pipeline is between 50%and 100%,the relative error is less than 3.5%.展开更多
The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov p...The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov processes has been consid- ered. Local Gaussian models can be used to describe the process inside each phase state. The possibility of describing the sta- tistics of reflections from the sea and the refractive index by using Kravchenko finite functions has been shown for the first time.展开更多
Independent component analysis (ICA) is a widely used method for blind source separation (BSS). The mature ICA model has a restriction that the number of the sources must equal to that of the sensors used to colle...Independent component analysis (ICA) is a widely used method for blind source separation (BSS). The mature ICA model has a restriction that the number of the sources must equal to that of the sensors used to collect data, which is hard to meet in most practical cases. In this paper, an overdetermined ICA method is proposed and successfully used in the analysis of human colonic pressure signals. Using principal component analysis (PCA), the method estimates the number of the sources firstly and reduces the dimensions of the observed signals to the same with that of the sources; and then, Fast- ICA is used to estimate all the sources. From 26 groups of colonic pressure recordings, several colonic motor patterns are extracted, which riot only prove the effectiveness of this method, but also greatly facilitate further medical researches.展开更多
The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size ...The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics.展开更多
Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrat...Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrated circuits(ASICs)and programmable digital signal processors for many DSP applications have changed,even though new system implementations based on reconfigurable computing are becoming more complex.Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation(DWT)and sophisticated computerized design techniques,which are much needed in today’s modern world.New research and commercial efforts to sustain power optimization,cost savings,and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged.Hence,in this paper,it is proposed that theDWTmethod can be implemented on a fieldprogrammable gate array in a digital architecture(FPGA-DA).We examined the effects of quantization on DWTperformance in classification problems to demonstrate its reliability concerning fixed-point math implementations.The Advanced Encryption Standard(AES)algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks(ANN)method.By reducing hardware area by 57%,the proposed system has a higher throughput rate of 88.72%,reliability analysis of 95.5%compared to the other standard methods.展开更多
Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,wit...Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)the Natural Science Foundation of Hubei Province of China(2023AFA028)the Innovation Project of Optics Valley Laboratory(OVL2021BG004).
文摘In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
基金supported by National Natural Science Foundation of China(Grant No.61761011)Natural Science Foundation of Guangxi(Grant No.2020GXNSFBA297078).
文摘In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.
基金supported by the National Key Research and Development Program of China(2022YFB2803700)the National Natural Science Foundation of China(62235002,62322501,12204021,62105008,62235003,and 62105260)+5 种基金Beijing Municipal Science and Technology Commission(Z221100006722003)Beijing Municipal Natural Science Foundation(Z210004)China Postdoctoral Science Foundation(2021T140004)Major Key Project of PCL,the Natural Science Basic Research Program of Shaanxi Province(2022 JQ-638)Young Talent fund of University Association for Science and Technology in Shaanxi,China(20220135)Young Talent fund of Xi'an Association for science and technology(095920221308).
文摘Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.
基金supported by National Natural Science Foundation of China (Grant No. 60672108, Grant No. 60372020)
文摘The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
基金Supported in part by National High Technology Research Project under Grant 863-317-9603-07-4Foundation of Radalr Signal Processing Key Laboratory
文摘In most wireless communication systems, two-dimensional Directions-Of-Arrival (DOA) of multipath signals need to be found for spatial selective transmission. However, it is quite difficult to find their DOAs due to the coherent nature of multipath signals and considerable computations when performing 2-D searches. In this paper, a new algorithm to estimate 2-D DOA of multiple narrow-band signals is proposed. A DOA cyclic matrix is constructed whose eigenvalues and eigenvectors can be simultaneously used to extract 2-D DOA without 2-D searches. By exploiting the temporal property of cyclostationarity, the signal detection capability is significantly improved. Besides, based on the decorrelation model for mobile terminal signals, the algorithm can be effectively extended to the coherent case without spatial smoothing and the loss of array aperture. Simulation results are given to illustrate the performance of the new algorithm.
文摘In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Extraction of buried correlated signals is achieved without averaging in the time or frequency domain.
文摘In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements.
基金National Natural Science Foundation of China (Grant Nos. 51835009, 52105116)China Postdoctoral Science Foundation (Grant Nos. 2021M692557, 2021TQ0263)。
文摘Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network(SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network(DFAWNet) is developed, which consists of fused wavelet convolution(FWConv), dynamic hard thresholding(DHT),index-based soft filtering(ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically;DHT dynamically eliminates noise-related components via point-wise hard thresholding;inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github. com/alber tszg/DFAWn et.
基金Supported by National Natural Science Foundation of China
文摘In this paper, the evaluation by running window smoothing is used for the digital processing of the polarization of geophysical ULF signals. The observed signals are resolved into two orthogonal complex components so that it is no longer necessary to consider the phase and amplitude of the signals simultaneously.
基金the Science and Technology Project of Education Department of the Guangdong Province,China(2017GKTSCX079)Science and Technology Project of Zhongshan Polytechnic,China(2018G01).
文摘When a pipe is partially filled with a given working liquid,the relationship between the electromotive force(EMF)measured by the sensor(flowmeter)and the average velocity is nonlinear and non-monotonic.This relationship varies with the inclination of the pipe,the fluid density,the pipe wall friction coefficient,and other factors.Therefore,existing measurement methods cannot meet the accuracy requirements of many industrial applications.In this study,a new processing method is proposed by which the flow rate can be measured with an ordinary electromagnetic flowmeter even if the pipe is only partially filled.First,a B-spline curve fitting method is applied to a limited set of measurements.Second,matrix inversion required in the B-spline curve method is optimized in order to reduce the number of needed computations.Dedicated experimental tests prove that the proposed method can effectively measure the average flow velocity of the fluid.When the fluid level of the pipeline is between 50%and 100%,the relative error is less than 3.5%.
基金The Joint Grant of the National Academy of Sciences of Ukraine(NASU)and the Russian Foundation for Basic Research(RFBR)2012-2013(No.12-02-90425)The Task Comprehensive Program of NAS U on the Scientific Space Research 2012-2016
文摘The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov processes has been consid- ered. Local Gaussian models can be used to describe the process inside each phase state. The possibility of describing the sta- tistics of reflections from the sea and the refractive index by using Kravchenko finite functions has been shown for the first time.
基金supported by National Natural Science Foundation(No.60875061)
文摘Independent component analysis (ICA) is a widely used method for blind source separation (BSS). The mature ICA model has a restriction that the number of the sources must equal to that of the sensors used to collect data, which is hard to meet in most practical cases. In this paper, an overdetermined ICA method is proposed and successfully used in the analysis of human colonic pressure signals. Using principal component analysis (PCA), the method estimates the number of the sources firstly and reduces the dimensions of the observed signals to the same with that of the sources; and then, Fast- ICA is used to estimate all the sources. From 26 groups of colonic pressure recordings, several colonic motor patterns are extracted, which riot only prove the effectiveness of this method, but also greatly facilitate further medical researches.
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1A2C1006159)and(NRF-2021R1A6A1A03039493)by the 2021 Yeungnam University Research Grant.
文摘The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics.
基金This work was supported by King Saud University for funding this work through Researchers Supporting Project number(RSP-2021/387),King Saud University,Riyadh,Saudi Arabia。
文摘Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrated circuits(ASICs)and programmable digital signal processors for many DSP applications have changed,even though new system implementations based on reconfigurable computing are becoming more complex.Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation(DWT)and sophisticated computerized design techniques,which are much needed in today’s modern world.New research and commercial efforts to sustain power optimization,cost savings,and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged.Hence,in this paper,it is proposed that theDWTmethod can be implemented on a fieldprogrammable gate array in a digital architecture(FPGA-DA).We examined the effects of quantization on DWTperformance in classification problems to demonstrate its reliability concerning fixed-point math implementations.The Advanced Encryption Standard(AES)algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks(ANN)method.By reducing hardware area by 57%,the proposed system has a higher throughput rate of 88.72%,reliability analysis of 95.5%compared to the other standard methods.
基金supported by the National Natural Science Foundation of China(NSFC,no.61701243,71771125)the Major Project of Natural Science Foundation of Jiangsu Education Department(no.19KJA180002).
文摘Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.