期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Combining Polarization-Division Multiplexing and Ferromagnetic Nonreciprocity to Achieve In-Band Ultra-High Isolation for Full-Duplex Wireless Systems
1
作者 Amir Afshani Ke Wu 《Engineering》 SCIE EI CAS CSCD 2024年第9期179-187,共9页
The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and re... The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals.Enabling IBFD systems requires a substantial mitigation of a transmitter(Tx)’s strong self-interference(SI)signal into the receiver(Rx)channel.However,current state-ofthe-art approaches to tackle this challenge are inefficient in terms of performance,cost,and complexity,hindering the commercialization of IBFD techniques.In this work,we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and lesscomplex architecture in an all-passive module.Our scheme is based on meticulously combining polarization-division multiplexing(PDM)with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels.Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module,and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes.In addition,we propose a unique passive tunable secondary SI cancellation(SIC)mechanism,which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth.We report,solely in the analog domain,experimental isolation levels of 50,70,and 80 dB over 340,101,and 33 MHz bandwidth at the center frequency of interest,respectively,with excellent tuning capability.Furthermore,the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal. 展开更多
关键词 In-band full-duplex transceiver 6G Polarization-division multiplexing Dual-mode nonreciprocity
下载PDF
Nonreciprocity of energy transfer in a nonlinear asymmetric oscillator system with various vibration states 被引量:1
2
作者 Jian’en CHEN Jianling LI +3 位作者 Minghui YAO Jun LIU Jianhua ZHANG Min SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第5期727-744,共18页
The nonreciprocity of energy transfer is constructed in a nonlinear asymmetric oscillator system that comprises two nonlinear oscillators with different parameters placed between two identical linear oscillators.The s... The nonreciprocity of energy transfer is constructed in a nonlinear asymmetric oscillator system that comprises two nonlinear oscillators with different parameters placed between two identical linear oscillators.The slow-flow equation of the system is derived by the complexification-averaging method.The semi-analytical solutions to this equation are obtained by the least squares method,which are compared with the numerical solutions obtained by the Runge-Kutta method.The distribution of the average energy in the system is studied under periodic and chaotic vibration states,and the energy transfer along two opposite directions is compared.The effect of the excitation amplitude on the nonreciprocity of the system producing the periodic responses is analyzed,where a three-stage energy transfer phenomenon is observed.In the first stage,the energy transfer along the two opposite directions is approximately equal,whereas in the second stage,the asymmetric energy transfer is observed.The energy transfer is also asymmetric in the third stage,but the direction is reversed compared with the second stage.Moreover,the excitation amplitude for exciting the bifurcation also shows an asymmetric characteristic.Chaotic vibrations are generated around the resonant frequency,irrespective of which linear oscillator is excited.The excitation threshold of these chaotic vibrations is dependent on the linear oscillator that is being excited.In addition,the difference between the energy transfer in the two opposite directions is used to further analyze the nonreciprocity in the system.The results show that the nonreciprocity significantly depends on the excitation frequency and the excitation amplitude. 展开更多
关键词 nonreciprocity strong nonlinearity energy transfer chaotic vibration higher branch of response
下载PDF
Optical nonreciprocity in a piezo-optomechanical system
3
作者 Yu-Ming Xiao Jun-Hao Liu +2 位作者 Qin Wu Ya-Fei Yu Zhi-Ming Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期321-325,共5页
We theoretically study the optical nonreciprocity in a piezo-optomechanical microdisk resonator,in which the cavity modes and the mechanical mode are optically pumped and piezoelectrically driven,respectively.For asym... We theoretically study the optical nonreciprocity in a piezo-optomechanical microdisk resonator,in which the cavity modes and the mechanical mode are optically pumped and piezoelectrically driven,respectively.For asymmetric optical pumping and different piezoelectrical drivings,our system shows some nonreciprocal optical responses.We find that our system can function as an optical isolator,a nonreciprocal amplifier,or a nonreciprocal phase shifter. 展开更多
关键词 quantum optics cavity optomechanical system optical nonreciprocity piezoelectric force
下载PDF
Design of quasi-zero-stiffness elastic diodes for low-frequency nonreciprocity through machine learning
4
作者 Junsen He Jiaxi Zhou +1 位作者 Kai Wang Qiang Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第7期137-151,共15页
Elastic diodes with nonreciprocity have the potential to enable unidirectional modulation of elastic waves.However,it is a challenge to achieve nonreciprocity at low frequencies(<100 Hz)using existing elastic diode... Elastic diodes with nonreciprocity have the potential to enable unidirectional modulation of elastic waves.However,it is a challenge to achieve nonreciprocity at low frequencies(<100 Hz)using existing elastic diodes.This paper proposes a quasizero-stiffness(QZS)elastic diode to resolve such a tough issue and fulfill high-quality low-frequency nonreciprocity.The proposed elastic diode is invented by combining a QZS locally resonant metamaterial with a linear one,where the beneficial nonlinearity of the QZS metamaterial facilitates opening an amplitude-dependent band gap at very low frequencies.Firstly,the dispersion relation of the QZS metamaterial is derived theoretically based on the harmonic balance method(HBM).Then,the transmissibility of the QZS elastic diode in both the forward and backward directions is calculated through theoretical analyses and numerical simulations.Additionally,the influences of system parameters on the low-frequency nonreciprocal effect are discussed.The results indicate that considerable nonreciprocity is observed at a quite low frequency(e.g.,9 Hz),which is achieved by amplitude-dependent local resonance combined with interface reflection.Finally,a machine learning-based design optimization is introduced to evaluate and enhance the nonreciprocal effect of the QZS elastic diode.With the aid of machine learning(ML),the computational cost of predicting nonreciprocal effects during design optimization can be significantly reduced.Through design optimization,the nonreciprocal frequency bandwidth can be broadened while maintaining considerable isolation quality at low frequencies. 展开更多
关键词 nonreciprocity LOW-FREQUENCY Elastic diode Quasi-zero-stiffness Nonlinear elastic metamaterials Machine learning
原文传递
Dynamical switchable quantum nonreciprocity induced by off-resonant chiral two-photon driving
5
作者 Da-Wei Liu Zi-Hao Li +2 位作者 Shi-Lei Chao Ying Wu Liu-Gang Si 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第6期31-37,共7页
Optical nonreciprocity,which refers to the direction-dependent emission,scattering and absorption of photons,plays a very important role in quantum engineering and quantum information processing.Here,we propose an all... Optical nonreciprocity,which refers to the direction-dependent emission,scattering and absorption of photons,plays a very important role in quantum engineering and quantum information processing.Here,we propose an all-optical approach to achieve the optical dynamical switchable quantum nonreciprocity by an off-resonant chiral two-photon driving in a single microring cavity,which differs from the conventional nonreciprocal schemes.It is shown that the optical field with time-dependent statistical properties can be generated and the nonreciprocity flips periodically,with switchable photon blockade and photon-induced tunneling effects.We find that the dynamical system is robust and immune to the parameter variations,which loosens the parameter range of system.Meanwhile,the time window for one-way quantum information is sufficiently wide and tunable.Our work opens a new idea for the current quantum nonreciprocal research,which can facilitate a memory functionality and be used for future inmemory superconducting quantum compute.The other nonreciprocal quantum devices,i.e.,dynamical switchable nonreciprocal squeezing and entanglement,may be inspired by our method,which is expected to have important applications in future quantum technology. 展开更多
关键词 dynamical switchable nonreciprocity single-photon source chiral two-photon driving
原文传递
Effects of cross-Kerr coupling on transmission spectrum of double-cavity optomechanical system
6
作者 陈立滕 秦立国 +3 位作者 田立君 黄接辉 周南润 龚尚庆 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期390-396,共7页
We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr(CK) effect. The system consists of two tunneling coupling optomechanical cavities with a me... We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr(CK) effect. The system consists of two tunneling coupling optomechanical cavities with a mechanical resonator as a coupling interface. By doping CK medium into the mechanical resonator, CK couplings between the cavity fields and the mechanical resonator are introduced. We investigate the effects of CK coupling strength on the transmission spectrum of the cavity field, including the transmission rate, nonreciprocity and four-wave mixing(FWM). We find that the transmission spectrum of the probe field can show two obvious transparent windows, which can be widened by increasing the CK coupling strength. For the transmission between the two cavity fields, the perfect nonreciprocity and reciprocity are present and modulated by CK coupling and phase difference between two effective optomechanical couplings. In addition, the effects of the optomechanical and CK couplings on FWM show that the single peak of FWM is split into three symmetrical peaks due to the introduction of the CK effect. 展开更多
关键词 cross-Kerr transmission rate nonreciprocity four-wave mixing
下载PDF
Nonreciprocal thermal metamaterials:Methods and applications
7
作者 Zhengjiao Xu Chuanbao Liu +2 位作者 Xueqian Wang Yongliang Li Yang Bai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1678-1693,共16页
Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,... Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,it is extremely difficult to achieve nonreciprocity of heat transfer.This review presents the recent developments in thermal nonreciprocity and explores the fundamental theories,which underpin the design of nonreciprocal thermal metamaterials,i.e.,the Onsager reciprocity theorem.Next,three methods for achieving nonreciprocal metamaterials in the thermal field are elucidated,namely,nonlinearity,spatiotemporal modulation,and angular momentum bias,and the applications of nonreciprocal thermal metamaterials are outlined.We also discuss nonreciprocal thermal radiation.Moreover,the potential applications of nonreciprocity to other Laplacian physical fields are discussed.Finally,the prospects for advancing nonreciprocal thermal metamaterials are highlighted,including developments in device design and manufacturing techniques and machine learning-assisted material design. 展开更多
关键词 thermal metamaterials nonreciprocity NONLINEARITY spatiotemporal modulation
下载PDF
Perfect optical nonreciprocity in a double-cavity optomechanical system 被引量:4
8
作者 Xiao-Bo Yan He-Lin Lu +1 位作者 Feng Gao Liu Yang 《Frontiers of physics》 SCIE CSCD 2019年第5期105-110,共6页
Nonreciprocal devices are indispen.sablo for building quantuin networks and ubiquitous in modern communication technology.Here,we propose to take advantage of the interference between optome-chanical interaction and l... Nonreciprocal devices are indispen.sablo for building quantuin networks and ubiquitous in modern communication technology.Here,we propose to take advantage of the interference between optome-chanical interaction and lincarly-couplcd interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system.Particularly,we have derived essential conditions for perfect optical nonrcciprocity ancl analysed properties of the optical nonreciprocal transmission.These results can be used to control optical transmission in quantum information processing. 展开更多
关键词 optoinechanics OPTICAL nonreciprocity nonreciprocal transmission
原文传递
Perfect Optical Nonreciprocity with Mechanical Driving in a Three-Mode Optomechanical System 被引量:2
9
作者 Li-Hua Zhao Xian-Li Li +1 位作者 He-Lin Lu Xue-Dong Tian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第8期1011-1016,共6页
Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology.Here, we study perfect optical nonreciprocity in a three-mode optomechanical system with mechanic... Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology.Here, we study perfect optical nonreciprocity in a three-mode optomechanical system with mechanical driving.The scheme relies on the interference between optomechanical interaction and mechanical driving.We find perfect optical nonreciprocity can be achieved even though nonreciprocal phase difference is zero if we drive the system by a mechanical driving with a nonzero phase.We obtain the essential conditions for perfect optical nonreciprocity and analyze properties of the optical nonreciprocal transmission.These results can be used to control optical transmission in quantum information processing. 展开更多
关键词 cavity OPTOMECHANICS OPTICAL nonreciprocity nonreciprocal transmission MECHANICAL driving
原文传递
Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking 被引量:2
10
作者 Da Xu Zi-Zhao Han +4 位作者 Yu-Kun Lu Qihuang Gong Cheng-Wei Qiu Gang Chen Yun-Feng Xiao 《Advanced Photonics》 EI CSCD 2019年第4期15-20,共6页
Synchronization is of importance in both fundamental and applied physics,but its demonstration at the micro/nanoscale is mainly limited to low-frequency oscillations such as mechanical resonators.We report the synchro... Synchronization is of importance in both fundamental and applied physics,but its demonstration at the micro/nanoscale is mainly limited to low-frequency oscillations such as mechanical resonators.We report the synchronization of two coupled optical microresonators,in which the high-frequency resonances in the optical domain are aligned with reduced noise.It is found that two types of synchronization regimes emerge with either the first-or second-order transition,both presenting a process of spontaneous symmetry breaking.In the second-order regime,the synchronization happens with an invariant topological character number and a larger detuning than that of the first-order case.Furthermore,an unconventional hysteresis behavior is revealed for a time-dependent coupling strength,breaking the static limitation and the temporal reciprocity.The synchronization of optical microresonators offers great potential in reconfigurable simulations of manybody physics and scalable photonic devices on a chip. 展开更多
关键词 :microcavity SYNCHRONIZATION spontaneous symmetry breaking nonreciprocity
原文传递
Nonreciprocal transport in the superconducting state of the chiral crystal NbGe_(2)
11
作者 刘永来 许锡童 +6 位作者 何苗 赵海天 曾庆祺 杨星宇 邹优鸣 杜海峰 屈哲 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期161-165,共5页
Due to the lack of inversion,mirror or other roto-inversion symmetries,chiral crystals possess a well-defined handedness which,when combined with time-reversal symmetry breaking from the application of magnetic fields... Due to the lack of inversion,mirror or other roto-inversion symmetries,chiral crystals possess a well-defined handedness which,when combined with time-reversal symmetry breaking from the application of magnetic fields,can give rise to directional dichroism of the electrical transport phenomena via the magnetochiral anisotropy.In this study,we investigate the nonreciprocal magneto-transport in microdevices of NbGe_(2),a superconductor with structural chirality.A giant nonreciprocal signal from vortex motions is observed during the superconducting transition,with the ratio of nonreciprocal resistance to the normal resistanceγreaching 6×10^(5)T^(-1)·A^(-1).Interestingly,the intensity can be adjusted and even sign-reversed by varying the current,the temperature,and the crystalline orientation.Our findings illustrate intricate vortex dynamics and offer ways of manipulation on the rectification effect in superconductors with structural chirality. 展开更多
关键词 chiral crystals magnetochiral anisotropy superconducting vortex nonreciprocal transport
下载PDF
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
12
作者 Yuqiang Ding Zhenyi Luo +1 位作者 Garimagai Borjigin Shin-Tson Wu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期4-14,共11页
A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads t... A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption. 展开更多
关键词 near-eye display virtual reality pancake optics folded optics nonreciprocal polarization rotator
下载PDF
Unleashing the Potential of Unidirectional Mechanical Materials: Breakthroughs and Promising Applications
13
作者 Sunil Harripersad 《Materials Sciences and Applications》 2024年第4期66-86,共21页
The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively ... The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use. 展开更多
关键词 Mechanically One-Way Materials Nonreciprocal Mechanical Responses Directed Sound Propagation Controlled Mass Transport Energy Harvesting Structural Engineering Economic Viability Environmental Impact
下载PDF
Nonreciprocal negative refraction in a dense hot atomic medium
14
作者 易海 张红军 孙辉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期50-57,共8页
We investigate the electromagnetic properties of a four-level dense atomic gas medium with Doppler effect.It is shown that the relative permittivity and relative permeability of the medium can be negative simultaneous... We investigate the electromagnetic properties of a four-level dense atomic gas medium with Doppler effect.It is shown that the relative permittivity and relative permeability of the medium can be negative simultaneously with low absorption in the same detuning interval on account of electromagnetically induced transparency.Furthermore,with the suitable parameters,the nonreciprocal negative refraction can be obtained due to the Doppler effect,and the nonreciprocity frequency band can be regulated by adjusting the temperature,the intensity of the control field and the atomic density in this hot atomic medium. 展开更多
关键词 negative refraction nonreciprocity Doppler effect atomic system
下载PDF
Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
15
作者 刘又铭 史源坤 +2 位作者 万宝飞 张丹 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期319-328,共10页
We propose magnetized gyromagnetic photonic crystals(MGPCs)composed of indium antimonide(InSb)and yttrium iron garnet ferrite(YIGF)layers,which possess the properties of nonreciprocal wide-angle bidirectional absorpti... We propose magnetized gyromagnetic photonic crystals(MGPCs)composed of indium antimonide(InSb)and yttrium iron garnet ferrite(YIGF)layers,which possess the properties of nonreciprocal wide-angle bidirectional absorption.Periodical defects in the MGPCs work as filters.Absorption bands(ABs)for the positive and negative propagations arise from the optical Tamm state and resonance in cavities respectively,and they prove to share no overlaps in the studied frequency range.Givenω=2.0138 THz,for the positive propagation,the ABs in the high-frequency range are localized in the interval between 0.66ωand 0.88ω.In the angular range,the ABs for the TE and TM waves reach 60°and 51°,separately.For the negative propagation,the ABs in the low-frequency range are localized in the interval between 0.13ωand 0.3ω.The AB s extend to 60°for the TE waves and 80.4°for the TM waves.There also exists a narrow frequency band in a lower frequency range.The relevant factors,which include the external temperature,the magnetic fields applied to the YIGF,the refractive index of the impedance matching layer,and the defect thickness,are adjusted to investigate the effects on the ABs.All the numerical simulations are based on the transfer matrix method.This work provides an approach to designs of isolators and so on. 展开更多
关键词 nonreciprocal absorption magnetized gyromagnetic photonic crystals transfer matrix method optical Tamm state
下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
16
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
下载PDF
Nonreciprocal transmission of electromagnetic waves by three-layer magneto-optical mediums
17
作者 Guan-Xia Yu Jing-Jing Fu +2 位作者 Wen-Wen Du Yi-Hang Lv Min Luo 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期197-201,共5页
We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coeffic... We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coefficient for a one-dimensional(1 D) structure with anisotropic mediums. When two-side layers with magneto–optical medium loaded in opposite external magnetic field, the time-reversal symmetry of transmission properties will be broken. Our numerical results show that the non-reciprocal transmission properties are influenced by external magnetic fields, incident angle, and thickness of the normal medium layer. Since the non-reciprocal properties can be easily realized and adjusted by the simple structure, such a design has potential applications in integrated circulators and isolators. 展开更多
关键词 magneto–optical MEDIUM nonreciprocal TRANSMISSION nonreciprocity
下载PDF
THE COMBINED EFFECTS OF GYROTROPY AND CHIRALITY IN CIRCULAR FARADAY CHIROWAVEGUIDES
18
作者 Yin Wenyan (Northwestern Polytechnical University, Xi’an 710072)Feng Maoyan(Nanjing Shipping Institute, Nanjing 210011) 《Journal of Electronics(China)》 1997年第3期261-269,共9页
Based on the method of separating variables and the technique of Muller’s calculating roots, the propagation characteristics of hybrid modes in homogeneous and inhomogeneous circular Faraday chirowaveguides are exami... Based on the method of separating variables and the technique of Muller’s calculating roots, the propagation characteristics of hybrid modes in homogeneous and inhomogeneous circular Faraday chirowaveguides are examined in detail. Numerical results are presented to demonstrate the combined effects of different constitutive parameters on the mode bifurcation, symmetry and nonreciprocity, backward-wave and attenuation of hybrid modes, which are different from the cases of ordinary gyrotropic and reciprocal chiral waveguides. 展开更多
关键词 FARADAY chiral medium CIRCULAR waveguide Dispersion nonreciprocity Backward-wave
下载PDF
Nonlocal nonreciprocal optomechanical circulator
19
作者 Ji-Hui Zheng Rui Peng +2 位作者 Jiong Cheng Jing An Wen-Zhao Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期325-333,共9页
A nonlocal circulator protocol is proposed in a hybrid optomechanical system.By analogy with quantum communication,using the input-output relationship,we establish the quantum channel between two optical modes with lo... A nonlocal circulator protocol is proposed in a hybrid optomechanical system.By analogy with quantum communication,using the input-output relationship,we establish the quantum channel between two optical modes with long-range.The three-body nonlocal interaction between the cavity and the two oscillators is obtained by eliminating the optomechanical cavity mode and verifying the Bell-CHSH inequality of continuous variables.By introducing the phase accumulation between cyclic interactions,the unidirectional transmission of quantum state between the optical mode and two mechanical modes is achieved.The results show that nonreciprocal transmissions are achieved as long as the accumulated phase reaches a certain value.In addition,the effective interaction parameters in our system are amplified,which reduces the difficulty of the implementation of our protocol.Our research can provide potential applications for nonlocal manipulation and transmission control of quantum platforms. 展开更多
关键词 OPTOMECHANICS NONLOCALITY nonreciprocity
下载PDF
Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole–dipole interaction
20
作者 Xinqin Zhang Xiuwen Xia +3 位作者 Jingping Xu Haozhen Li Zeyun Fu Yaping Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期302-308,共7页
We present a work of manipulating collective unconventional photon blockade(UCPB)and nonreciprocal UCPB(NUCPB)in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical twol... We present a work of manipulating collective unconventional photon blockade(UCPB)and nonreciprocal UCPB(NUCPB)in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical twolevel atoms(TLAs).When the atoms do not interact directly,the frequency and intensity restrictions of collective UCPB can be specified,and a giant NUCPB exists due to the splitting of optimal atom–cavity coupling strength in proper parameter regime.However,if a weak atom–atom interaction which provides a new and feeble quantum interference pathway to UCPB is taken into account,two restrictions of UCPB are combined complexly,which are rigorous to be matched simultaneously.Due to the push-and-pull effect induced by weak dipole–dipole interaction,the UCPB regime is compressed more or less.NUCPB is improved as a higher contrast is present when the two complex UCPB restrictions are matched,while it is suppressed when the restrictions are mismatched.In general,whether NUCPB is suppressed or promoted depends on its working parameters.Our findings show a prospective access to produce giant quantum nonreciprocity by a couple of weakly interacting atoms. 展开更多
关键词 unconventional photon blockade quantum nonreciprocity dipole–dipole interaction
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部