The degradation of the shear stress between pile-clay interface caused by undrained cyclic jacking affects the jacking force.A series of large displacement monotonic shear,cyclic shear and post-cyclic monotonic steel ...The degradation of the shear stress between pile-clay interface caused by undrained cyclic jacking affects the jacking force.A series of large displacement monotonic shear,cyclic shear and post-cyclic monotonic steel plate-clay interface shear te sts were performed under the constant normal load(CNL)condition to inve stigate the effects of normal stre ss,cyclic amplitude,and number of cycles on a steel plate-clay interface using the GDS multi-function interface shear tester.Based on the experimental results,in monotonic shear tests,change of shear stress took place in the specimen,the shear stress rapidly reached the peak value at shear displacement of 1 mm,and then abruptly decreased to the residual value.In cyclic shear te sts,accumulated displacement was a better parameter to describe the soil degradation characteristics,and the degradation degree of shear stress became greater with the increasing of normal stress and accumulated displacement.Shear stress in post-cyclic monotonic shear tests did not generate a peak value and was lower than that in monotonic shear tests under the same normal stress.The soil was completely disturbed and reached the residual strength when the cumulative displacement approached 6 m.An empirical equation to evaluate shear stress degradation mechanism was formulated and the procedure of parameter identification was presented.展开更多
The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tr...The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tribological behavior than under-aged (UA) and over-aged (OA) alloys, which could be attributed to the optimized strength-ductility matching and a better hardness under PA condition. Wear rate and friction coefficient showed great sensitivity to applied sliding velocity and normal load. The wear rate and friction coefficient of the alloy exhibited a reduction trend with the increase in sliding velocity. The low wear rate and friction coefficient of alloy at high velocities were due to the effectively protected film and homogeneous Sn on surface. However, an increase in normal load led to an obvious increment in wear rate. The friction coefficient exhibited a fluctuant trend with the increase of normal loads. The seriously destroyed film and abraded Sn resulted in poor tribological behavior at high normal loads. The Sn particles and lubricant film which includes low shear interfacial lubricating layer and oxide tribolayer are the key to the tribological behavior of Al-Sn-Cu alloy.展开更多
The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the friction...The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.展开更多
The dynamic frictional behaviors of natural discontinuities(joints,fractures,faults)play an important role in geohazards assessment;however,the mechanisms of the dynamic fault weakening/strengthening are still unclear...The dynamic frictional behaviors of natural discontinuities(joints,fractures,faults)play an important role in geohazards assessment;however,the mechanisms of the dynamic fault weakening/strengthening are still unclear.In this paper,a dynamic shear box was used to perform direct shear tests on saw-cut(planar)and natural(rough)granite fractures,with different normal load oscillation amplitudes.Based on the recorded shear forces and normal displacements,the shear forces,apparent friction coefficients and normal displacements are found to change periodically with oscillated normal loads and are characterized by a series of time shifts.The observed changing patterns are similar for the rough and planar fractures.Compared with the test data under constant normal load(CNL),small/large normal load oscillation amplitude enhances/reduces the peak shear strength,with a critical point.The magnitude of critical normal load oscillation for the rough fractures is smaller than the planer fractures.The results imply that dynamic fault weakening/strengthening can be achieved by both normal load oscillation amplitudes and slip surface topography.The rough fractures with larger normal oscillation amplitude can easily cause frictional weakening under stress disturbance.展开更多
To investigate the wear resistance of ZG42CrMo in industrial application,the wear behaviors under different normal loads,sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire t...To investigate the wear resistance of ZG42CrMo in industrial application,the wear behaviors under different normal loads,sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire the friction coefficients and wear rates,with the morphology of worn surface observed by scanning electron microscopy(SEM) and chemical composition of worn surface and debris analyzed by X-ray energy dispersive spectroscopy(EDS).Combine with the theory of tribology,finally the regular of environmental factors’ influence on material wear behaviors is determined.The results show that the increase of load decreases wear resistance significantly,when the pressure reaches a certain extent,severe spalling occurs on the worn surface;the changes of speed result in the changes of size of abrasive debris,and then effect the wear behaviors,in the increasing process of speed,the wear rate increases firstly and then decreases;the rise of temperature causes changes in wear mechanism,bring forth oxidation film on the worn surface,which leads to significant improvement of the wear resistance of materials under high temperature compared to that under low temperature展开更多
Slide-hold-slide(SHS)test is an essential experimental approach for studying the frictional stability of faults.The origin SHS framework was established based on a consistent constant normal stress,which cannot truly ...Slide-hold-slide(SHS)test is an essential experimental approach for studying the frictional stability of faults.The origin SHS framework was established based on a consistent constant normal stress,which cannot truly reflect the stress disturbance around fault zones.In this paper,we conducted a series of'dynamic SHS tests',which includes normal stress oscillations in the relaxation stage with different oscillation amplitudes and frequencies on synthetic quartz gouge using a double direct shear assembly.The experimental results reveal that the amplitude of the normal load oscillation has a remarkable effect on the frictional relaxation and healing patterns.However,the frequency of the normal load oscillation has a minor effect.Additionally,the shear loading rate is proportional to the normal loading rate during the relaxation stage,and the normal stiffness of the quartz layer remains nearly constant under various loading conditions.The creep rate during the hold phase is not obviously affected by the normal load oscillation,while the precursory slip is also sensitive to the oscillation amplitude.This study provides insights into the evolution of frictional stability in discontinuities and is beneficial for controlling relative disasters in fault zones.展开更多
This paper investigates the frictional behavior of the infilled rock fracture under dynamic normal stress.A series of direct shear tests were conducted on saw-cut granite fractures infilled with quartz using a selfdev...This paper investigates the frictional behavior of the infilled rock fracture under dynamic normal stress.A series of direct shear tests were conducted on saw-cut granite fractures infilled with quartz using a selfdeveloped dynamic shear apparatus,and the effects of normal load oscillation amplitude,normal load oscillation period and sliding velocity were studied.The test results reveal that the shear response can be divided into three stages over a whole loading-unloading process,characterized by different time spans and stress variations.Generally,a smaller oscillation amplitude,a longer oscillation period and a fast shear velocity promote the stability of the friction system,which is also confirmed by the Coulomb failure criterion calculated based on the observed periodic apparent friction coefficient.The dynamic strengthening/weakening phenomenon is dependent on the oscillation amplitude and product of sliding velocity and oscillation period(vT).Also,the rate and state friction law incorporating the parameter a that characterizes the normal stress variation is employed to describe the dynamic friction coefficient but exhibits an incompetent performance when handling intensive variation in normal stress.Finally,the potential seismicity induced by oscillating normal stress based on the observed stress drop is analyzed.This work helps us understand the sliding process and stability evolution of natural faults,and its benefits for relative hazard mitigation.展开更多
In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock j...In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.展开更多
基金financially supported by the Fundamental Research Funds for the Study on Formation and Evolution Mechanism of Soil Plug of Jacked Pipe Pile Cyclic Penetration in Clay (Grant No.52078483)。
文摘The degradation of the shear stress between pile-clay interface caused by undrained cyclic jacking affects the jacking force.A series of large displacement monotonic shear,cyclic shear and post-cyclic monotonic steel plate-clay interface shear te sts were performed under the constant normal load(CNL)condition to inve stigate the effects of normal stre ss,cyclic amplitude,and number of cycles on a steel plate-clay interface using the GDS multi-function interface shear tester.Based on the experimental results,in monotonic shear tests,change of shear stress took place in the specimen,the shear stress rapidly reached the peak value at shear displacement of 1 mm,and then abruptly decreased to the residual value.In cyclic shear te sts,accumulated displacement was a better parameter to describe the soil degradation characteristics,and the degradation degree of shear stress became greater with the increasing of normal stress and accumulated displacement.Shear stress in post-cyclic monotonic shear tests did not generate a peak value and was lower than that in monotonic shear tests under the same normal stress.The soil was completely disturbed and reached the residual strength when the cumulative displacement approached 6 m.An empirical equation to evaluate shear stress degradation mechanism was formulated and the procedure of parameter identification was presented.
基金Project(2013AH100055)supported by the Special Foundation for Science and Technology Innovation of Foshan,China
文摘The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tribological behavior than under-aged (UA) and over-aged (OA) alloys, which could be attributed to the optimized strength-ductility matching and a better hardness under PA condition. Wear rate and friction coefficient showed great sensitivity to applied sliding velocity and normal load. The wear rate and friction coefficient of the alloy exhibited a reduction trend with the increase in sliding velocity. The low wear rate and friction coefficient of alloy at high velocities were due to the effectively protected film and homogeneous Sn on surface. However, an increase in normal load led to an obvious increment in wear rate. The friction coefficient exhibited a fluctuant trend with the increase of normal loads. The seriously destroyed film and abraded Sn resulted in poor tribological behavior at high normal loads. The Sn particles and lubricant film which includes low shear interfacial lubricating layer and oxide tribolayer are the key to the tribological behavior of Al-Sn-Cu alloy.
基金This work was supported by the National Natural Science Foundation of China(grant No.50475164 and 50535050)by the Science Foundation of China University of Mining and Technology(grant No.2005B034).
文摘The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.
基金the funding support from the National Natural Science Foundation of China (Grant No. 51904359)the Guangdong Provincial Department of Science and Technology (Grant No. 2019ZT08G090)the Open Research Fund of the State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (CUMT) (Grant No. SKLCRSM20KF002)
文摘The dynamic frictional behaviors of natural discontinuities(joints,fractures,faults)play an important role in geohazards assessment;however,the mechanisms of the dynamic fault weakening/strengthening are still unclear.In this paper,a dynamic shear box was used to perform direct shear tests on saw-cut(planar)and natural(rough)granite fractures,with different normal load oscillation amplitudes.Based on the recorded shear forces and normal displacements,the shear forces,apparent friction coefficients and normal displacements are found to change periodically with oscillated normal loads and are characterized by a series of time shifts.The observed changing patterns are similar for the rough and planar fractures.Compared with the test data under constant normal load(CNL),small/large normal load oscillation amplitude enhances/reduces the peak shear strength,with a critical point.The magnitude of critical normal load oscillation for the rough fractures is smaller than the planer fractures.The results imply that dynamic fault weakening/strengthening can be achieved by both normal load oscillation amplitudes and slip surface topography.The rough fractures with larger normal oscillation amplitude can easily cause frictional weakening under stress disturbance.
基金Sponsored by High Technology Research and Development Program of China(2009AA04Z143)New Century Excellent Talents in University of China(NCET-09-0117)
文摘To investigate the wear resistance of ZG42CrMo in industrial application,the wear behaviors under different normal loads,sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire the friction coefficients and wear rates,with the morphology of worn surface observed by scanning electron microscopy(SEM) and chemical composition of worn surface and debris analyzed by X-ray energy dispersive spectroscopy(EDS).Combine with the theory of tribology,finally the regular of environmental factors’ influence on material wear behaviors is determined.The results show that the increase of load decreases wear resistance significantly,when the pressure reaches a certain extent,severe spalling occurs on the worn surface;the changes of speed result in the changes of size of abrasive debris,and then effect the wear behaviors,in the increasing process of speed,the wear rate increases firstly and then decreases;the rise of temperature causes changes in wear mechanism,bring forth oxidation film on the worn surface,which leads to significant improvement of the wear resistance of materials under high temperature compared to that under low temperature
基金supported by Fundamental Research Funds for the Central Universities (22dfx06)Natural Science Foundation of Guangdong Province-Joint Program for Offshore Wind Power (2022A1515240009).
文摘Slide-hold-slide(SHS)test is an essential experimental approach for studying the frictional stability of faults.The origin SHS framework was established based on a consistent constant normal stress,which cannot truly reflect the stress disturbance around fault zones.In this paper,we conducted a series of'dynamic SHS tests',which includes normal stress oscillations in the relaxation stage with different oscillation amplitudes and frequencies on synthetic quartz gouge using a double direct shear assembly.The experimental results reveal that the amplitude of the normal load oscillation has a remarkable effect on the frictional relaxation and healing patterns.However,the frequency of the normal load oscillation has a minor effect.Additionally,the shear loading rate is proportional to the normal loading rate during the relaxation stage,and the normal stiffness of the quartz layer remains nearly constant under various loading conditions.The creep rate during the hold phase is not obviously affected by the normal load oscillation,while the precursory slip is also sensitive to the oscillation amplitude.This study provides insights into the evolution of frictional stability in discontinuities and is beneficial for controlling relative disasters in fault zones.
基金the National Natural Science Foundation of China(Nos.51904359,51978677 and 52111530089)the Guangdong Provincial Department of Science and Technology(No.2019ZT08G090)+2 种基金the Enhanced National Key Basic Research Program(No.2019-JCJQ-ZD-352-00-04)the Science and Technology Program for Sustainable Development of Shenzhen(No.KCXFZ202002011008532)the Open Research Fund of the State Key Laboratory of Coal Resources and Safe Mining,CUMT(No.SKLCRSM20KF002).
文摘This paper investigates the frictional behavior of the infilled rock fracture under dynamic normal stress.A series of direct shear tests were conducted on saw-cut granite fractures infilled with quartz using a selfdeveloped dynamic shear apparatus,and the effects of normal load oscillation amplitude,normal load oscillation period and sliding velocity were studied.The test results reveal that the shear response can be divided into three stages over a whole loading-unloading process,characterized by different time spans and stress variations.Generally,a smaller oscillation amplitude,a longer oscillation period and a fast shear velocity promote the stability of the friction system,which is also confirmed by the Coulomb failure criterion calculated based on the observed periodic apparent friction coefficient.The dynamic strengthening/weakening phenomenon is dependent on the oscillation amplitude and product of sliding velocity and oscillation period(vT).Also,the rate and state friction law incorporating the parameter a that characterizes the normal stress variation is employed to describe the dynamic friction coefficient but exhibits an incompetent performance when handling intensive variation in normal stress.Finally,the potential seismicity induced by oscillating normal stress based on the observed stress drop is analyzed.This work helps us understand the sliding process and stability evolution of natural faults,and its benefits for relative hazard mitigation.
基金Project(51274249)supported by the National Natural Science Foundation of ChinaProject(2015zzts076)supported by the Explore Research Fund for Graduate Students of ChinaProject(201406)supported by the Hunan Key Laboratory of Coal Resources and Safe Mining Open-end Funds,China
文摘In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.