In this paper, we prove the following results: 1) A normal basis N over a finite field is equivalent to its dual basis if and only if the multiplication table of N is symmetric; 2) The normal basis N is self-dual i...In this paper, we prove the following results: 1) A normal basis N over a finite field is equivalent to its dual basis if and only if the multiplication table of N is symmetric; 2) The normal basis N is self-dual if and only if its multiplication table is symmetric and Tr(α^2) = 1, where α generates N; 3) An optimal normal basis N is self-dual if and only if N is a type-Ⅰ optimal normal basis with q = n = 2 or N is a type-Ⅱ optimal normal basis.展开更多
文摘In this paper, we prove the following results: 1) A normal basis N over a finite field is equivalent to its dual basis if and only if the multiplication table of N is symmetric; 2) The normal basis N is self-dual if and only if its multiplication table is symmetric and Tr(α^2) = 1, where α generates N; 3) An optimal normal basis N is self-dual if and only if N is a type-Ⅰ optimal normal basis with q = n = 2 or N is a type-Ⅱ optimal normal basis.