期刊文献+
共找到295篇文章
< 1 2 15 >
每页显示 20 50 100
Accumulation and exploration enlightenment of shallow normal-pressure shale gas in southeastern Sichuan Basin, SW China
1
作者 YUN Lu 《Petroleum Exploration and Development》 SCIE 2023年第6期1308-1319,共12页
Based on the drilling, logging, experimental and testing data of Well PD1, a shallow normal-pressure shale gas well in the Laochangping anticline in southeastern Sichuan Basin, the shallow shale gas reservoirs of the ... Based on the drilling, logging, experimental and testing data of Well PD1, a shallow normal-pressure shale gas well in the Laochangping anticline in southeastern Sichuan Basin, the shallow shale gas reservoirs of the Ordovician Wufeng Formation to Silurian Longmaxi Formation (Wufeng-Longmaxi) were investigated in terms of geological characteristics, occurrence mechanism, and adsorption-desorption characteristics, to reveal the enrichment laws and high-yield mechanism of shallow normal-pressure shale gas in complex structure areas. First, the shallow shale gas reservoirs are similar to the medium-deep shale gas reservoirs in static indicators such as high-quality shale thickness, geochemistry, physical properties and mineral composition, but the former is geologically characterized by low formation pressure coefficient, low gas content, high proportion of adsorbed gas, low in-situ stress, and big difference between principal stresses. Second, shallow shales in the complex structure areas have the gas occurrence characteristics including low total gas content (1.1-4.8 m3/t), high adsorbed gas content (2.5-2.8 m3/t), low sensitive desorption pressure (1.7-2.5 MPa), and good self-sealing. Third, the adsorbed gas enrichment of shales is mainly controlled by organic matter abundance, formation temperature and formation pressure: the higher the organic matter abundance and formation pressure, the lower the formation temperature and the higher the adsorption capacity, which is more beneficial for the adsorbed gas occurrence. Fourth, the shallow normal-pressure shale gas corresponds to low sensitive desorption pressure. The adsorbed gas can be rapidly desorbed and recovered when the flowing pressure is reduced below the sensitive desorption pressure. Fifth, the exploration breakthrough of Well PD1 demonstrates that the shallow complex structure areas with adsorbed gas in dominance can form large-scale shale reservoirs, and confirms the good exploration potential of shallow normal-pressure shale gas in the margin of the Sichuan Basin. 展开更多
关键词 shallow normal-pressure shale gas adsorbed gas ADSORPTION-DESORPTION sensitive desorption pressure Ordovician Wufeng-Silurian Longmaxi Sichuan Basin
下载PDF
Experimental and numerical simulation study on the erosion behavior of the elbow of gathering pipeline in shale gas field
2
作者 En-Bin Liu Shen Huang +3 位作者 Ding-Chao Tian Lai-Min Shi Shan-Bi Peng He Zheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1257-1274,共18页
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow... During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%. 展开更多
关键词 shale gas gas gathering pipeline ELBOW EROSION CFD
下载PDF
Optimization method of refracturing timing for old shale gas wells
3
作者 WANG Qiang ZHAO Jinzhou +2 位作者 HU Yongquan LI Yongming WANG Yufeng 《Petroleum Exploration and Development》 SCIE 2024年第1期213-222,共10页
Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f... Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance. 展开更多
关键词 shale gas well fully coupled seepage-geomechanical model REFRACTURING timing optimization influencing factor
下载PDF
Effects of acid-rock reaction on physical properties during CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)injection in shale reservoirs
4
作者 Yi-Fan Wang Jing Wang +2 位作者 Hui-Qing Liu Xiao-Cong Lv Ze-Min Ji 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期272-285,共14页
"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China... "Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG. 展开更多
关键词 CO_(2)-rich industrial waste gas Geological storage Acid-rock reaction shale Geochemical modelling
下载PDF
Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells
5
作者 Yi Song Zheyu Hu +5 位作者 Cheng Shen Lan Ren Xingwu Guo Ran Lin Kun Wang Zhiyong Zhao 《Fluid Dynamics & Materials Processing》 EI 2024年第3期609-624,共16页
Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress i... Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress interference,which results in uneven fracture propagation. It is common practice to use “balls” to temporarily plug fractureopenings in order to lessen liquid intake and achieve uniform propagation in each cluster. In this study, a diameteroptimization model is introduced for these plugging balls based on a multi-cluster fracture propagationmodel and a perforation dynamic abrasion model. This approach relies on proper consideration of the multiphasenature of the considered problem and the interaction force between the involved fluid and solid phases. Accordingly,it can take into account the behavior of the gradually changing hole diameter due to proppant continuousperforation erosion. Moreover, it can provide useful information about the fluid-dynamic behavior of the consideredsystem before and after plugging. It is shown that when the diameter of the temporary plugging ball is1.2 times that of the perforation hole, the perforation holes of each cluster can be effectively blocked. 展开更多
关键词 Deep shale gas fracture propagation fluid mechanics fluid-solid coupling perforation hole abrasion
下载PDF
Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells
6
作者 Yongwei Duan Zhaopeng Zhu +2 位作者 Hui He Gaoliang Xuan Xuemeng Yu 《Fluid Dynamics & Materials Processing》 EI 2024年第2期349-364,共16页
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework... The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells. 展开更多
关键词 shale gas fracturingfluid backflow the stimulated reservoir volume gas-water two-phase production
下载PDF
Theory,technology and practice of shale gas three-dimensional development:A case study of Fuling shale gas field in Sichuan Basin,SW China 被引量:2
7
作者 SUN Huanquan CAI Xunyu +5 位作者 HU Degao LU Zhiyong ZHAO Peirong ZHENG Aiwei LI Jiqing WANG Haitao 《Petroleum Exploration and Development》 SCIE 2023年第3期651-664,共14页
In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is dif... In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is difficult.Based on the understanding of the main factors controlling shale gas enrichment and high production,the theory and technology of shale gas three-dimensional development,such as fine description and modeling of shale gas reservoir,optimization of three-dimensional development strategy,highly efficient drilling with dense well pattern,precision fracturing and real-time control,are discussed.Three-dimensional development refers to the application of optimal and fast drilling and volume fracturing technologies,depending upon the sedimentary characteristics,reservoir characteristics and sweet spot distribution of shale gas,to form"artificial gas reservoir"in a multidimensional space,so as to maximize the employed reserves,recovery factor and yield rate of shale gas development.In the research on shale gas three-dimensional development,the geological+engineering sweet spot description is fundamental,the collaborative optimization of natural fractures and artificial fractures is critical,and the improvement of speed and efficiency in drilling and fracturing engineering is the guarantee.Through the implementation of three-dimensional development,the overall recovery factor in the Jiaoshiba block has increased from 12.6%to 23.3%,providing an important support for the continuous and stable production of the Fuling shale gas field. 展开更多
关键词 shale gas three-dimensional development Fuling shale gas field Sichuan Basin fine reservoir description precision fracturing recoveryfactor
下载PDF
Shale gas transport in nanopores with mobile water films and water bridge 被引量:1
8
作者 Ran Li Zhangxin Chen +1 位作者 Keliu Wu Jinze Xu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1068-1076,共9页
Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecu... Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecules separate gas slugs. Considering water slippage, a portion of water molecules accumulates at the wall with lower mobility, while the remaining water molecules take the shape of a water bridge. Adopting foam apparent viscosity model to represent slug rheological behavior, how water bridge disturbs on gas flow capacity is estimated. The results are compared with the water–gas two phase flow model that assumes annular flow pattern as well as the single gas flow model without the consideration of water. The comparison illustrates that gas molecular movement is significantly hindered by flow space reduction and loss of gas slippage. The impact from water phase of slug flow pattern is more significant than that of annular flow pattern on gas flow capacity. It is discovered that larger nanopores improve gas flow capacity while maintaining bulk water layer thickness and increasing water bridge thickness tend to reduce gas transport ability. A better understanding of the structure and transport of water and gas molecules is conducive to figure out the specific gas–water flow behavior and predict shale gas production. 展开更多
关键词 shale gas Water bridge Water film NANOPORE
下载PDF
Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China 被引量:1
9
作者 GUO Tonglou XIONG Liang +3 位作者 YE Sujuan DONG Xiaoxia WEI Limin YANG Yingtao 《Petroleum Exploration and Development》 2023年第1期27-42,共16页
Unconventional gas in the Sichuan Basin mainly includes shale gas and tight gas.The development of shale gas is mainly concentrated in the Ordovician Wufeng Formation-Silurian Longmaxi Formation,but has not made any s... Unconventional gas in the Sichuan Basin mainly includes shale gas and tight gas.The development of shale gas is mainly concentrated in the Ordovician Wufeng Formation-Silurian Longmaxi Formation,but has not made any significant breakthrough in the Cambrian Qiongzhusi Formation marine shale regardless of exploration efforts for years.The commercial development of tight sandstone gas is mainly concentrated in the Jurassic Shaximiao Formation,but has not been realized in the widespread and thick Triassic Xujiahe Formation.Depending on the geological characteristics of the Qiongzhusi Formation and Xujiahe Formation,the feedback of old wells was analyzed.Then,combining with the accumulation mechanisms of con-ventional gas and shale gas,as well as the oil/gas shows during drilling,changes in production and pressure during develop-ment,and other characteristics,it was proposed to change the exploration and development strategy from source and reservoir exploration to carrier beds exploration.With the combination of effective source rock,effective carrier beds and effective sand-stone or shale as the exploration target,a model of unconventional gas accumulation and enrichment in carrier beds was built.Under the guidance of this study,two significant results have been achieved in practice.First,great breakthrough was made in exploration of the silty shale with low organic matter abundance in the Qiongzhusi Formation,which breaks the traditional approach to prospect shale gas only in organic-rich black shales and realizes a breakthrough in new areas,new layers and new types of shale gas and a transformation of exploration and development of shale gas from single-layer system,Longmaxi For-mation,to multi-layer system in the Sichuan Basin.Second,exploration breakthrough and high-efficient development were re-alized for difficult-to-produce tight sandstone gas reserves in the Xujiahe Formation,which helps address the challenges of low production and unstable production of fracture zones in the Xujiahe Formation,promote the transformation of tight sandstone gas from reserves without production to effective production,and enhance the exploration and development potential of tight sandstonegas. 展开更多
关键词 Sichuan Basin carrier bed tight gas shale gas silty shale Cambrian Qiongzhusi Formation Triassic Xujiahe Formation
下载PDF
Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches 被引量:1
10
作者 Jin Meng Yu-Jie Zhou +4 位作者 Tian-Rui Ye Yi-Tian Xiao Ya-Qiu Lu Ai-Wei Zheng Bang Liang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期277-294,共18页
A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis ca... A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis can be challenging because production performance is dominated by the complex interaction among a series of geological and engineering factors.In fact,each factor can be viewed as a player who makes cooperative contributions to the production payoff within the constraints of physical laws and models.Inspired by the idea,we propose a hybrid data-driven analysis framework in this study,where the contributions of dominant factors are quantitatively evaluated,the productions are precisely forecasted,and the development optimization suggestions are comprehensively generated.More specifically,game theory and machine learning models are coupled to determine the dominating geological and engineering factors.The Shapley value with definite physical meaning is employed to quantitatively measure the effects of individual factors.A multi-model-fused stacked model is trained for production forecast,which provides the basis for derivative-free optimization algorithms to optimize the development plan.The complete workflow is validated with actual production data collected from the Fuling shale gas field,Sichuan Basin,China.The validation results show that the proposed procedure can draw rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for development plan optimization.Comparing with traditional and experience-based approaches,the hybrid data-driven procedure is advanced in terms of both efficiency and accuracy. 展开更多
关键词 shale gas Production performance DATA-DRIVEN Dominant factors Game theory Machine learning Derivative-free optimization
下载PDF
Analysis of fracture propagation and shale gas production by intensive volume fracturing 被引量:1
11
作者 Qingdong ZENG Long BO +4 位作者 Lijun LIU Xuelong LI Jianmeng SUN Zhaoqin HUANG Jun YAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1385-1408,共24页
This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation... This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production. 展开更多
关键词 fracture network propagation shale gas fow intensive volume fracturing displacement discontinuity method(DDM) embedded discrete fracture model(EDFM)
下载PDF
Adsorbed and free gas occurrence characteristics and controlling factors of deep shales in the southern Sichuan Basin,China
12
作者 Shang-Wen Zhou Dong-Xiao Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1301-1311,共11页
Deep shale gas(3500-4500 m)will be the important succeeding field for the growth of shale gas production in China.Under the condition of high temperature and high pressure in deep shale gas reservoirs,its gas occurren... Deep shale gas(3500-4500 m)will be the important succeeding field for the growth of shale gas production in China.Under the condition of high temperature and high pressure in deep shale gas reservoirs,its gas occurrence characteristics are markedly different from those of medium and shallow layers.To elucidate the gas occurrence characteristics and controlling factors of deep shales in the Wufeng-Longmaxi Formation,methane adsorption,low-temperature N2,and cO2 adsorption experi-ments were conducted.The results show that in deep shales,the mesopores provide approximately 75%of the total specific surface area(SA)and 90%of the total pore volume(PV).Based on two hypotheses and comparing the theoretical and actual adsorption capacity,it is speculated that methane is adsorbed in deep shale in the form of micropore filling,and free gas is mainly stored in the mesopores.Correlation analysis demonstrated that ToC is the key material constraint for the adsorption capacity of deep shale,and micropore SSA is the key spatial constraint.Other minerals and mesopore parameters have limited effect on the amount of adsorbed gas.Moreover,the free gas content ranges from 2.72 m^(3)/t to 6.20 m^(3)/t,with an average value of 4.60 m^(3)/t,and the free gas content ratio is approximately 58%,suggesting that the deep shale gas reservoirs are dominated by free gas.This ratio may also increase to approximately 70%when considering the formation temperature effect on adsorbed gas.Gas density,porosity,and gas saturation are the main controlling factors of free gas content,resulting in significantly larger free gas content in deep shale than in shallower formations. 展开更多
关键词 Adsorbedgas Free gas gas occurrence characteristics Deep shale
下载PDF
Tectonic evolution and accumulation characteristics of Carboniferous shale gas in Yadu-Ziyun-Luodian aulacogen, Guizhou Province, South China
13
作者 Kun Yuan Wen-hui Huang +5 位作者 Ting Wang Shi-zhen Li Xiang-can Sun Xin-xin Fang Jun-ping Xiao Jun Guo 《China Geology》 CAS CSCD 2023年第4期646-659,共14页
The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zon... The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zone is considered a large intracontinental thrust-slip tectonic unit, which has undergone a long period of development. It was ultimately determined in the Yanshanian, where the typical Upper Paleozoic marine shales were deposited. In 2021, Well QSD-1 was deployed in the Liupanshui area at the northwest margin of the aulacogen, and obtained a daily shale gas flow of 11011 m3in the Carboniferous Dawuba Formation. It thus achieved a breakthrough in the invesgation of shale gas in the Lower Carboniferous in South China, revealing relatively good gas-bearing properties and broad exploration prospects of the aulacogen. Being different from the Lower Paleozoic strata in the Sichuan Basin and the Yichang area of the Middle Yangtze, the development of the Carboniferous Dawuba Formation in the aulacogen exhibits the following characteristics:(1) The Lower Carboniferous shale is thick and widely distributed, with interbedded shale and marlstone of virous thickness;(2) The total organic carbon(TOC) content of the shale in the Dawuba Formation ranges from 1% to 5%, with an average of 2%, and the thermal maturity of organic matter(Ro) varies from 1% to 4%, with an average of2.5%, indicating good hydrocarbon generation capacity;(3) The main shale in the aulacogen was formed during the fault subsidence stage from the Middle Devonian to the Early Permian. Although the strong compression and deformation during the late Indosinian-Himalayan played a certain role in destroying the formed shale gas reservoirs, comparative analysis suggests that the area covered by the current Triassic strata has a low degree of destruction. It therefore provides good conditions for shale gas preservation,which can be regarded as a favorable area for the next exploration. 展开更多
关键词 shale gas AULACOGEN CARBONIFEROUS shale and marlstone Organic carbon Organic matter Hydrocarbon generation capacity Tectonic evolution Accumulation characteristics
下载PDF
Shale gas production evaluation framework based on data-driven models
14
作者 You-Wei He Zhi-Yue He +3 位作者 Yong Tang Ying-Jie Xu Ji-Chang Long Kamy Sepehrnoori 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1659-1675,共17页
Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to... Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling. 展开更多
关键词 shale gas Production evaluation Production prediction Data-driven models Carbon neutrality
下载PDF
Gas storage in shale pore system:A review of the mechanism,control and assessment
15
作者 Yue Feng Xian-Ming Xiao +3 位作者 En-Ze Wang Ping Gao Chen-Gang Lu Gang Li 《Petroleum Science》 SCIE EI CSCD 2023年第5期2605-2636,共32页
In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas ex... In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas exploration potential,the gas-bearing properties of shale(quantity,storage state,composition)and their controlling factors are the essential research attracting wide attention in the academic community.This paper reviews the research progress on the retention mechanism,influencing factors,and evaluation methods for resource potential of the shale gas system,and proposes further research directions.Sorption is the main mechanism of gas retention in organic-rich shales;the gas is mainly stored in nanopores of shale in free and sorption states.The presence of water and nonhydrocarbon gases in pores can complicate the process and mechanism of methane(CH4)sorption,and the related theoretical models still need further development.The in-situ gas content and gasbearing properties of shale are governed by the geological properties(organic matter abundance,kerogen type,thermal maturity,mineral composition,diagenesis),the properties of fluids in pores(water,CH_(4),non-hydrocarbon gases),and geological conditions(temperature,pressure,preservation conditions)of the shale itself.For a particular basin or block,it is still challenging to define the main controlling factors,screen favorable exploration areas,and locate sweet spots.Compared to marine shales with extensive research and exploration data,lacustrine and marine-continental transitional shales are a further expanding area of investigation.Various methods have been developed to quantitatively characterize the in-situ gas content of shales,but all these methods have their own limitations,and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,especially shales at deep depth. 展开更多
关键词 shale gas Retention mechanism Multi-component adsorption Influencing factors Evaluation method
下载PDF
A Productivity Prediction Method Based on Artificial Neural Networks and Particle Swarm Optimization for Shale-Gas Horizontal Wells
16
作者 Bin Li 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2729-2748,共20页
In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-izontal wells after fracturing,a new sophisticated approach is proposed in this study.This new model stem... In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-izontal wells after fracturing,a new sophisticated approach is proposed in this study.This new model stems from the combination several techniques,namely,artificial neural network(ANN),particle swarm optimization(PSO),Imperialist Competitive Algorithms(ICA),and Ant Clony Optimization(ACO).These are properly implemented by using the geological and engineering parameters collected from 317 wells.The results show that the optimum PSO-ANN model has a high accuracy,obtaining a R2 of 0.847 on the testing.The partial dependence plots(PDP)indicate that liquid consumption intensity and the proportion of quartz sand are the two most sensitive factors affecting the model’s performance. 展开更多
关键词 shale gas productivity prediction ANN meta-heuristic algorithm PDP
下载PDF
Interpretable machine learning optimization(InterOpt)for operational parameters:A case study of highly-efficient shale gas development
17
作者 Yun-Tian Chen Dong-Xiao Zhang +1 位作者 Qun Zhao De-Xun Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1788-1805,共18页
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne... An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells. 展开更多
关键词 Interpretable machine learning Operational parameters optimization Shapley value shale gas development Neural network
下载PDF
Analysis of Wellbore Flow in Shale Gas Horizontal Wells
18
作者 Linjuan Zeng Daogang Cai +2 位作者 Yunhai Zhao Changqing Ye Chengcheng Luo 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2813-2825,共13页
Theflow behavior of shale gas horizontal wells is relatively complex,and this should be regarded as the main reason for which conventional pipeflow models are not suitable to describe the related dynamics.In this stud... Theflow behavior of shale gas horizontal wells is relatively complex,and this should be regarded as the main reason for which conventional pipeflow models are not suitable to describe the related dynamics.In this study,numerical simulations have been conducted to determine the gas-liquid distribution in these wells.In particular,using the measuredflow pressure data related to 97 groups of shale gas wells as a basis,9 distinct pipeflow models have been assessed,and the models displaying a high calculation accuracy for different water-gas ratio(WGR)ranges have been identified.The results show that:(1)The variation law of WGR in gas well satisfies a power function relation.(2)The well structure is the main factor affecting the gas-liquid distribution in the wellbore.(3)The Beggs&Brill,Hagedorn&Brown and Gray models exhibit a high calculation accuracy. 展开更多
关键词 shale gas horizontal well production characteristics wellbore gas-liquid distribution pipeflow model
下载PDF
Shale oil and gas exploitation in China:Technical comparison with US and development suggestions
19
作者 LEI Qun WENG Dingwei +5 位作者 GUAN Baoshan SHI Junfeng CAI Bo HE Chunming SUN Qiang HUANG Rui 《Petroleum Exploration and Development》 SCIE 2023年第4期944-954,共11页
The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials... The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”. 展开更多
关键词 shale oil and gas reservoir stimulation oil/gas production technology oil/gas development philosophy reservoir stimulation treatment flow regime
下载PDF
Experimental Study on the Influence of Fracturing Fluid Retention on Shale Gas Diffusion Law
20
作者 Zhiyuan Yao Jing Sun Dehua Liu 《Energy Engineering》 EI 2023年第8期1853-1866,共14页
Shale gas reservoirs have poor physical properties and a large number of micro-nano pores have been developed.Shale gas wells have no natural productivity and need fracturing reconstruction measures to put into produc... Shale gas reservoirs have poor physical properties and a large number of micro-nano pores have been developed.Shale gas wells have no natural productivity and need fracturing reconstruction measures to put into production.However,the fracturing fluid will enter the reservoir space of shale matrix after fracturing and affect the production of shale gas.At present,there is no consensus on the influence of fracturing fluid retention on gas well production.Based on this,the paper adopts gas molecular transport analyzer to carry out experimental research on the influence of fracturing fluid on shale gas diffusion law after entering matrix pores.The results show that:(1)Compared with the diffusion capacity of single-phase shale gas,the diffusion capacity of shale gas decreases significantly when fracturing fluid is present in the reservoir;(2)In the process of fracturing fluid flowback,when the water saturation in the reservoir decreases from 50%to 0,the gas well productivity increases by about 60%.(3)When fracturing fluid exists in the reservoir,the pore diameter has an exponential relationship with the shale gas diffusion coefficient,and the diffusion coefficient increases exponentially with the increase of pore diameter.The research of this paper provides theoretical basis for guiding the efficient development of shale gas wells. 展开更多
关键词 shale gas micro nano pore water saturation diffusion law gas production
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部