期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
Assessment of vegetation cover changes and the contributing factors in the Al-Ahsa Oasis using Normalized Difference Vegetation Index(NDVI)
1
作者 Walid CHOUARI 《Regional Sustainability》 2024年第1期42-53,共12页
The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influ... The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis. 展开更多
关键词 normalized difference Vegetation Index(NDVI) Vegetation cover Ecological environment Land use and land cover(LULC) Urban expansion Al-Ahsa Oasis
下载PDF
Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index 被引量:1
2
作者 Ayad M F AL-QURAISHI Heman A GAZNAYEE Mattia CRESPI 《Journal of Arid Land》 SCIE CSCD 2021年第4期413-430,共18页
Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdi... Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdistan Region(IKR)is located in the north of Iraq,which has also suffered from extreme drought.In this study,the drought severity status in Sulaimaniyah Province,one of four provinces of the IKR,was investigated for the years from 1998 to 2017.Thus,Landsat time series dataset,including 40 images,were downloaded and used in this study.The Normalized Difference Vegetation Index(NDVI)and the Normalized Difference Water Index(NDWI)were utilized as spectral-based drought indices and the Standardized Precipitation Index(SPI)was employed as a meteorological-based drought index,to assess the drought severity and analyse the changes of vegetative cover and water bodies.The study area experienced precipitation deficiency and severe drought in 1999,2000,2008,2009,and 2012.Study findings also revealed a drop in the vegetative cover by 33.3%in the year 2000.Furthermore,the most significant shrinkage in water bodies was observed in the Lake Darbandikhan(LDK),which lost 40.5%of its total surface area in 2009.The statistical analyses revealed that precipitation was significantly positively correlated with the SPI and the surface area of the LDK(correlation coefficients of 0.92 and 0.72,respectively).The relationship between SPI and NDVI-based vegetation cover was positive but not significant.Low precipitation did not always correspond to vegetative drought;the delay of the effect of precipitation on NDVI was one year. 展开更多
关键词 climate change DROUGHT normalized difference Vegetation Index(NDVI) normalized difference Water Index(NDWI) Standardized Precipitation Index(SPI) delay effect
下载PDF
Interannual Variability of the Normalized Difference Vegetation Index on the Tibetan Plateau and Its Relationship with Climate Change 被引量:24
3
作者 周定文 范广洲 +3 位作者 黄荣辉 方之芳 刘雅勤 李洪权 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期474-484,共11页
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly... The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability. 展开更多
关键词 Tibetan Plateau normalized difference vegetation index (NDVI) ECOSYSTEM climate change interannual variability
下载PDF
A second modified normalized difference water index(SMNDWI) in the case of extracting the shoreline 被引量:9
4
作者 LI Ming ZHENG Xiao-shen 《Marine Science Bulletin》 CAS 2016年第2期15-27,共13页
Due to the fast development of industrialization and urbanization, shorelineextraction is necessary for the sustainable development and environment protection inmany countries. This study focused on the accurate metho... Due to the fast development of industrialization and urbanization, shorelineextraction is necessary for the sustainable development and environment protection inmany countries. This study focused on the accurate methods of extracting theinstantaneous waterline —shoreline obtained as the same instant as the satellite imageis acquired. Based on NDWI (Normalized Difference Water Index) and MNDWI(Modified Normalized Difference Water Index), the study changed the bandcombination and proposed a second modified normalized water index (SMNDWI) toextract the waterline. And, this new index is applied to three types of coast to evaluatethe performance of this method with traditional ones. Results show that SNDWI isbetter than NDWI and suitable for applying to the waterline extraction. 展开更多
关键词 SHORELINE normalized difference water index LANDSAT
下载PDF
Simple method for extracting the seasonal signals of photochemical reflectance index and normalized difference vegetation index measured using a spectral reflectance sensor 被引量:2
5
作者 Jae-Hyun RYU Dohyeok OH Jaeil CHO 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第7期1969-1986,共18页
A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical ref... A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions. 展开更多
关键词 photochemical reflectance index normalized difference vegetation index VEGETATION remote sensing spectral reflectance sensor
下载PDF
Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China 被引量:4
6
作者 Peng LI Luguang JIANG +2 位作者 Zhiming FENG Sage SHELDON Xiangming XIAO 《Frontiers of Earth Science》 CSCD 2016年第2期303-314,共12页
Mapping rice cropping systems with optical imagery in multiple cropping regions is challenging due to cloud contamination and data availability; development of a phenology-based algorithm with a reduced data demand is... Mapping rice cropping systems with optical imagery in multiple cropping regions is challenging due to cloud contamination and data availability; development of a phenology-based algorithm with a reduced data demand is essential. In this study, the Landsat-derived Renorma- lized Index of Normalized Difference Vegetation Index (RNDVI) was proposed based on two temporal windows in which the NDVI values of single and early (or late) rice display inverse changes, and then applied to discriminate rice cropping systems. The Poyang Lake Region (PLR), characterized by a typical cropping system of single cropping rice (SCR, or single rice) and double cropping rice (DCR, including early rice and late rice), was selected as a testing area. The results showed that NDVI data derived from Landsat time-series at eight to sixteen days captures the temporal development of paddy rice. There are two key phenological stages during the overlapping growth period in which the NDVI values of SCR and DCR change inversely, namely the ripening phase of early rice and the growing phase of single rice as well as the ripening stage of single rice and the growing stage of late rice. NDVI derived from scenes in two temporal windows, specifically early August and early October, was used to construct the RNDVI for discriminating rice cropping systems in the polder area of the PLR, China. Comparison with ground truth data indicates high classification accuracy. The RNDVI approach highlights the inverse variations of NDVI values due to the difference of rice growth between two temporal windows. This makes the discrimination of rice cropping systems straightforward as it only needs to distinguish whether the candidate rice typeis in the period of growth (RNDVI 〈 0) or senescence (RNDVI 〉 0). 展开更多
关键词 normalized difference Vegetation Index(NDVI) Renormalized Index of NDVI (RNDVI) ricecropping systems PHENOLOGY temporal windows PoyangLake Region (PLR)
原文传递
Impact of climate and human activity on NDVI of various vegetation types in the Three-River Source Region, China
7
作者 LU Qing KANG Haili +2 位作者 ZHANG Fuqing XIA Yuanping YAN Bing 《Journal of Arid Land》 SCIE CSCD 2024年第8期1080-1097,共18页
The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetatio... The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the total area.Meanwhile,human activity played a notable positive role in the southwestern and southeastern areas of the TRSR,covering 62.65%of the total area.Therefore,climate change had a significantly higher impact on NDVI during the growing season in the TRSR than human activity. 展开更多
关键词 growing season normalized difference vegetation index(NDVI) highland vegetation trend analysis partial correlation analysis residual analysis contribution rate
下载PDF
Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023
8
作者 YAN Yujie CHENG Yiben +3 位作者 XIN Zhiming ZHOU Junyu ZHOU Mengyao WANG Xiaoyu 《Journal of Arid Land》 SCIE CSCD 2024年第8期1062-1079,共18页
The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the... The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau. 展开更多
关键词 kernel normalized difference vegetation index(kNDVI) human activities climate change partial correlation analysis composite correlation analysis residual analysis Mongolian Plateau
下载PDF
Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022
9
作者 SUN Chao BAI Xuelian +2 位作者 WANG Xinping ZHAO Wenzhi WEI Lemin 《Journal of Arid Land》 SCIE CSCD 2024年第8期1044-1061,共18页
Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aime... Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins. 展开更多
关键词 vegetation variation climate change land use change normalized difference vegetation index(NDVI) enhanced vegetation index(EVI) Shiyang River Basin
下载PDF
Drivers,Trends,and Patterns of Changing Vegetation-greenness in Nansha Islands,China from 2016 to 2022
10
作者 TANG Jiasheng FU Dongjie +2 位作者 SU Fenzhen YU Hao WANG Xinhui 《Chinese Geographical Science》 SCIE CSCD 2024年第4期662-673,共12页
Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how ... Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative. 展开更多
关键词 island and reefs(IRs) normalized difference Vegetation Index(NDVI) vegetation-greenness change-rate Sen's slope Nansha Islands China
下载PDF
Climate-Vegetation Coverage Interactions in the Hengduan Mountains Area, Southeastern Tibetan Plateau, and Their Downstream Effects
11
作者 Congxi FANG Jinlei CHEN +4 位作者 Chaojun OUYANG Lu WANG Changfeng SUN Quan ZHANG Jun WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期701-716,共16页
Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ... Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate. 展开更多
关键词 Hengduan Mountains Area normalized difference vegetation index climate change net heat flux downstream effects
下载PDF
中国不同干湿区植被变化及其与气候因子的关系 被引量:2
12
作者 韩云环 马柱国 +1 位作者 李明星 张安凝知 《大气科学》 CSCD 北大核心 2023年第6期1680-1692,共13页
中国各区植被覆盖和气候特征多样,植被覆盖变化和气候变化及植被对气候因子的响应存在明显的区域差异,研究不同气候区植被变化及其与气候变化的关系可以为各区针对性地应对气候变化、制定植物保护和生态环境修复政策提供科学依据。本文... 中国各区植被覆盖和气候特征多样,植被覆盖变化和气候变化及植被对气候因子的响应存在明显的区域差异,研究不同气候区植被变化及其与气候变化的关系可以为各区针对性地应对气候变化、制定植物保护和生态环境修复政策提供科学依据。本文首先基于中分辨率成像光谱仪(MODIS)的土地覆盖数据,根据植被带的分布确定了划分中国干湿区的指标,其次利用归一化植被指数(NDVI)分析不同干湿区域NDVI的时空变化特征,最后探讨了NDVI变化与温度、降水的关系。结果表明:(1)中国区域200 mm、500 mm和800 mm年降水量等值线分别与荒漠/草地、草地/农田、农田(草地)/森林植被带的分界线吻合,气候过渡带对应着植被过渡带,这些等值线作为划分干湿气候区的指标比较合理。(2)中国年平均NDVI从东南向西北递减,从小到大依次为干旱区(0.11)、半干旱区(0.35)、半湿润区(0.57)、湿润区(0.68)。1982~2015年中国大部分区域NDVI呈显著的增加趋势,区域平均的NDVI在干旱区、半干旱区分别以0.002(10 a)^(-1)、0.008(10 a)^(-1)的趋势显著增加,在半湿润区和湿润区也呈现增加趋势,但不显著。(3)四个干湿区的年平均温度和NDVI均呈显著正相关,仅干旱区、半干旱区年降水和NDVI呈显著正相关,半湿润区和湿润区的年降水与NDVI呈微弱负相关。决定系数表明气候因子变化对NDVI变异的解释比例,温度对四个干湿区NDVI时间变化的解释率相差不大,均在30%左右;降水对NDVI时间变化的解释率低于温度,降水对干旱区(18%)和半干旱区(20%)NDVI时间变化的解释率较大,降水主要影响着北方地区植被的生长。(4)月平均NDVI随着温度和降水的增加都有显著的增加趋势,半湿润区的NDVI随温度升高增长的速率(0.026/℃)最快,半干旱区的NDVI对降水最敏感,随降水增多增加的速率为0.027/mm。 展开更多
关键词 中国区域 干湿区 植被变化 NDVI(normalized difference Vegetation Index) 气候因子
下载PDF
Spatiotemporal Changes in NDVI and Its Driving Factors in the Kherlen River Basin 被引量:3
13
作者 MUHAMMAD Naveed HE Hongshi +4 位作者 ZONG Shengwei DU Haibo SATTI Zulqarnain TAN Xinyuan QAZI Muhammad Yasir 《Chinese Geographical Science》 SCIE CSCD 2023年第2期377-392,共16页
Vegetation is an important factor linking the atmosphere,water,soil,and biological functions,and it plays a specific role in the climate change response and sustainable development of regional economies.However,little... Vegetation is an important factor linking the atmosphere,water,soil,and biological functions,and it plays a specific role in the climate change response and sustainable development of regional economies.However,little information is available on vegetation vulnerability and its driving mechanism.Therefore,studying temporal and spatial change characteristics of vegetation and their corresponding mechanisms is important for assessing ecosystem stability and formulating ecological policies in the Kherlen River Basin.We used Moderate-resolution Imaging Spectroradiometer(MODIS)normalized difference vegetation index(NDVI)remote sensing images from 2000 to 2020 to analyse temporal changes in NDVI with the autoregressive moving average model(ARMA)and the breaks for additive season trend(BFAST)in the basin and to assess natural,anthropogenic and topographic factors with the Geodetector model.The results show that:1)the long NDVI time series remained stable in the Kherlen River Basin from 2000 to 2020,with a certain significant mutation period from 2013 to 2017;2)the coefficient of variation(CV)in the analysis of the spatial NDVI was generally constant,mainly at the level of 0.01–0.07,and the spatial NDVI change was minimally impacted by external interference;and 3)temperature and precipitation are the key factors affecting the NDVI in the basin,and changes in local hydrothermal conditions directly affect the local NDVI.The results of this study could provide a scientific basis for the effective protection of the ecological environment and will aid in understanding the influence of vegetation change mechanisms and the corresponding factors. 展开更多
关键词 normalized difference vegetation index(NDVI) spatial stability VEGETATION ECOLOGY Geodetector Kherlen River Basin
下载PDF
Spatiotemporal variation of surface albedo and its influencing factors in northern Xinjiang, China 被引量:1
14
作者 YUAN Shuai LIU Yongqiang +1 位作者 QIN Yan ZHANG Kun 《Journal of Arid Land》 SCIE CSCD 2023年第11期1315-1339,共25页
Surface albedo is a quantitative indicator for land surface processes and climate modeling,and plays an important role in surface radiation balance and climate change.In this study,by means of the MCD43A3 surface albe... Surface albedo is a quantitative indicator for land surface processes and climate modeling,and plays an important role in surface radiation balance and climate change.In this study,by means of the MCD43A3 surface albedo product developed on the basis of Moderate Resolution Imaging Spectroradiometer(MODIS),we analyzed the spatiotemporal variation,persistence status,land cover type differences,and annual and seasonal differences of surface albedo,as well as the relationship between surface albedo and various influencing factors(including Normalized Difference Snow Index(NDSI),precipitation,Normalized Difference Vegetation Index(NDVI),land surface temperature,soil moisture,air temperature,and digital elevation model(DEM))in the north of Xinjiang Uygur Autonomous Region(northern Xinjiang)of Northwest China from 2010 to 2020 based on the unary linear regression,Hurst index,and Pearson's correlation coefficient analyses.Combined with the random forest(RF)model and geographical detector(Geodetector),the importance of the above-mentioned influencing factors as well as their interactions on surface albedo were quantitatively evaluated.The results showed that the seasonal average surface albedo in northern Xinjiang was the highest in winter and the lowest in summer.The annual average surface albedo from 2010 to 2020 was high in the west and north and low in the east and south,showing a weak decreasing trend and a small and stable overall variation.Land cover types had a significant impact on the variation of surface albedo.The annual average surface albedo in most regions of northern Xinjiang was positively correlated with NDSI and precipitation,and negatively correlated with NDVI,land surface temperature,soil moisture,and air temperature.In addition,the correlations between surface albedo and various influencing factors showed significant differences for different land cover types and in different seasons.To be specific,NDSI had the largest influence on surface albedo,followed by precipitation,land surface temperature,and soil moisture;whereas NDVI,air temperature,and DEM showed relatively weak influences.However,the interactions of any two influencing factors on surface albedo were enhanced,especially the interaction of air temperature and DEM.NDVI showed a nonlinear enhancement of influence on surface albedo when interacted with land surface temperature or precipitation,with an explanatory power greater than 92.00%.This study has a guiding significance in correctly understanding the land-atmosphere interactions in northern Xinjiang and improving the regional land-surface process simulation and climate prediction. 展开更多
关键词 surface albedo MCD43A3 Hurst index random forest(RF)model geographical detector(Geodetector) normalized difference Snow Index(NDSI) northern Xinjiang
下载PDF
Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
15
作者 ZHAO Lili LI Lusheng +4 位作者 LI Yanbin ZHONG Huayu ZHANG Fang ZHU Junzhen DING Yibo 《Journal of Arid Land》 SCIE CSCD 2023年第12期1421-1438,共18页
The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecolo... The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecological environments.In this study,we constructed a new drought index(i.e.,Vegetation Drought Condition Index(VDCI))based on precipitation,potential evapotranspiration,soil moisture and Normalized Difference Vegetation Index(NDVI)data,to monitor vegetation drought in the nine major river basins(including the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin,Yangtze River Basin,Southeast River Basin,Pearl River Basin,Southwest River Basin and Continental River Basin)in China at 1-month–12-month(T1–T12)time scales.We used the Pearson's correlation coefficients to assess the relationships between the drought indices(the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index(SPEI),Standardized Soil Moisture Index(SSMI)and Self-calibrating Palmer Drought Severity Index(scPDSI))and the NDVI at T1–T12 time scales,and to estimate and compare the lag times of vegetation response to drought among different drought indices.The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1–T6 time scales.Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales.Potential evapotranspiration shows a higher degree of positive influence on vegetation,and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins.The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin and Yangtze River Basin at T1–T4 time scales.In general,the VDCI is more sensitive(with shorter lag time of vegetation response to drought)than the traditional drought indices(SPEI,scPDSI and SSMI)in monitoring vegetation drought,and thus it could be applied to monitor short-term vegetation drought.The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate,and can be applied in other fields of vegetation drought monitoring with complex mechanisms. 展开更多
关键词 vegetation drought Vegetation Drought Condition Index(VDCI) normalized difference Vegetation Index(NDVI) vegetation dynamics climate change China
下载PDF
Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China
16
作者 ZHANG Hui Giri R KATTEL +3 位作者 WANG Guojie CHUAI Xiaowei ZHANG Yuyang MIAO Lijuan 《Journal of Arid Land》 SCIE CSCD 2023年第7期871-885,共15页
Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which... Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI(normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region(northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors,precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future. 展开更多
关键词 grassland growth normalized difference vegetation index climate change soil moisture Inner Mongolia
下载PDF
Urban Planning Based on Nature—A Nature-Based Solution
17
作者 Tomislav Đorđević 《Journal of Building Construction and Planning Research》 2023年第1期1-25,共25页
After an international contest announced by the City of Abu Dhabi “Cool Abu Dhabi Challenge”<sup>1</sup> and the article published as a digest of a paper titled A Nature-based Solution [1], the decision ... After an international contest announced by the City of Abu Dhabi “Cool Abu Dhabi Challenge”<sup>1</sup> and the article published as a digest of a paper titled A Nature-based Solution [1], the decision has been made to take part in improving thermal comfort in public spaces by mitigating the impact of the effect of Urban Heat Islands (UHI)<sup>2</sup> in the city of the Belgrade. The basic research aims at achieving the balance between the conflicting impacts when the buildings with their infrastructure and water-green surrounding area are in such correlation that it fulfils acceptable living and heating standards and reduces the use of fossil fuels for cooling the urban areas (buildings). By implementing the remote detection it is possible to analyze and quantify the impact of over-building on the temperature rise in urban areas as well as the disturbance of the heating comfort and the increased demand for additional cooling. Now it is possible to create virtual models that will incorporate this newly-added urban vegetation into urban plans, depending on the evaporation potential that will affect the microclimate of the urban area. Such natural cooling can be measured and adapted and hence aimed at a potential decrease in areas with UHI emissions [2]. Suitable greenery in the summer season can be a useful improvement which concurrently enables and complements several cooling mechanisms—evaporative cooling and evapotranspiration, i.e. natural cooling systems. The remote detection shall establish and map the “healthy” and “unhealthy” greenery zones—that is the vegetation zones with the highest evaporative potential with the “cooling by evaporation” effect and also, by implementing the urban prediction model, it shall propose green infrastructure corridors aimed at a potential decrease in the Urban Heat Island Emission. 展开更多
关键词 Nature-Base Solution (NBS) Urban Heat Islands (UHI) Land Surface Temperature (LST) Land Use and Land Cover (LULC) normalized difference Vegetation Index (NDVI)
下载PDF
Seasonal Dynamics of Terrestrial Net Primary Production in Response to Climate Changes in China 被引量:32
18
作者 朴世龙 方精云 陈安平 《Acta Botanica Sinica》 CSCD 2003年第3期269-275,共7页
Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the north... Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the northern middle and high latitudes. In this study, time series dataset of normalized difference vegetation index (NDVI) and corresponding ground-based information on vegetation, climate, soil, and solar radiation, together with an ecological process model, were used to explore the seasonal trends of terrestrial NPP and their geographical differences in China from 1982 to 1999. As the results,. seasonal total NPP in China showed a significant increase for all four seasons (spring, summer, autumn and winter) during the past 18 years. The spring NPP indicated the largest increase rate, while the summer NPP was with the largest increase in magnitude. The response of NPP to climate changes varied with different vegetation types. The increased NPP was primarily led by an advanced growing season for broadleaf evergreen forest, needle-leaf evergreen forest, and needle-leaf deciduous forest, whilst that was mainly due to enhanced vegetation activity (amplitude of growth cycle) during growing season for broadleaf deciduous forest, broadleaf and needle-leaf mixed forest, broadleaf trees with groundcover, perennial grasslands, broadleaf shrubs with grasslands, tundra, desert, and cultivation. The regions with the largest increase in spring NPP appeared mainly in eastern China, while the areas with the largest increase in summer NPP occurred in most parts of Northwestern China, Qinghai-Xizang Plateau, Mts. Xiaoxinganling-Changbaishan, Sanjiang Plain, Songliao Plain, Sichuan Basin, Leizhou Peninsula, part of the middle and lower Yangtze River, and southeastern mountainous areas of China. In autumn, the largest NPP increase appeared in Yunnan Plateau-Eastern Xizang and the areas around Hulun Lake. Such different ways of the NPP responses depended on regional climate attributes and their changes. 展开更多
关键词 Carnegie-Ames-Stanford-Approach (CASA) model net primary production (NPP) seasonal change normalized difference vegetation index (NDVI) climate change
下载PDF
Vegetation Change of Ecotone in West of Northeast China Plain Using Time-series Remote Sensing Data 被引量:10
19
作者 HUANG Fang WANG Ping 《Chinese Geographical Science》 SCIE CSCD 2010年第2期167-175,共9页
Multi-temporal series of satellite SPOT-VEGETATION normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data from 1998 to 2007 were used for analyzing vegetation change of the eco... Multi-temporal series of satellite SPOT-VEGETATION normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data from 1998 to 2007 were used for analyzing vegetation change of the ecotone in the west of the Northeast China Plain. The yearly and monthly maximal values,anomalies and change rates of NDVI and NDWI were calculated to reveal the interannual and seasonal changes in vegetation cover and vegetation water content. Linear regression method was adopted to characterize the trends in vegetation change. The yearly maximal NDVI decreased from 0.41 in 1998 to 0.37 in 2007,implying the decreasing trend of vegetation activity. There was a significant decrease of maximal NDVI in spring and summer over the study period,while an increase trend was observed in autumn. The vegetation-improved regions and vegetation-degraded regions occupied 17.03% and 20.30% of the study area,respectively. The maximal NDWI over growing season dropped by 0.027 in 1998–2007,and about 15.15% of the study area showed a decreasing trend of water content. Vegetation water stress in autumn was better than that in spring. Vegetation cover and water content variations were sensitive to annual precipitation,autumn precipitation and summer temperature. The vegetation degradation trend in this ecotone might be induced by the warm-drying climate especially continuous spring and summer drought in the recent ten years. 展开更多
关键词 vegetation change normalized difference vegetation index (NDVI) normalized difference water index (NDWI) SPOT-VEGETATION ECOTONE Northeast China Plain
下载PDF
Land Use/Land Cover Change Detection in Pokhara Metropolitan, Nepal Using Remote Sensing
20
作者 Sanjeev Kumar Raut Puran Chaudhary Laxmi Thapa 《Journal of Geoscience and Environment Protection》 2020年第8期25-35,共11页
Land use and land cover are essential for maintaining and managing the natural resources on the earth surface. A complex set of economic, demographic, social, cultural, technological, and environmental processes usual... Land use and land cover are essential for maintaining and managing the natural resources on the earth surface. A complex set of economic, demographic, social, cultural, technological, and environmental processes usually result in the change in the land use/land cover change (LULC). Pokhara Metropolitan is influenced mainly by the combination of various driving forces: geographical location, high rate of population growth, economic opportunity, globalization, tourism activities, and political activities. In addition to this, geographically steep slope, rugged terrain, and fragile geomorphic conditions and the frequency of earthquakes, floods, and landslides make the Pokhara Metropolitan region a disaster-prone area. The increment of the population along with infrastructure development of a given territory leads towards the urbanization. It has been rapidly changing due to urbanization, industrialization and internal migration since the 1970s. The landscapes and ground patterns are frequently changing on time and prone to disaster. Here a study has been carried to study on LULC for the last 18 years (2000-2018). The supervised classification on Landsat Imagery was performed and verified the classification through computing the error matrix. Besides, the water bodies and vegetation area were extracted through the Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDWI) respectively. This research shows that during the last 18 years the agricultural areas diminishing by 15.66% while urban area is increasing by 13.2%. This research is beneficial for preparing the plan and policy in the sustainable development of Pokhara Metropolitan. 展开更多
关键词 Error Matrix Land Use/Land Cover (LULC) normalized difference Vegeta-tion Index (NDVI) normalized difference Water Index (NDWI) Supervised Image Classification Remote Sensing Urban Growth
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部