At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of...At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.展开更多
The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the...The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the eastern Asian continent and margin. The Yanshanian Movement was a globally important change in crustal tectonics during the Middle-Late Jurassic.Previous research has systematically studied the formation and evolution of the Yanshanian Movement, focusing on the timing and location of tectonic movements, and the sedimentary and volcanic strata. However, the question of whether the tectonic activity occurred globally, and the characteristics of the Yanshanian Movement remain debated. The main argument is that if a tectonic movement can only be characterized by a regional or local disconformity, and if the tectonic movement occurred in an intracontinental setting, with extensive deformation but with no disconformity despite volcanic eruptions and magmatic intrusions, accompanied by changes in crustal structure and composition, should it be defined as a tectonic event or process? This question requires further analysis. The main aim of this study is to distinguish whether the Yanshanian Movement is a local feature of the eastern Asian continent, or a global tectonic event related to subduction of the Pacific Plate. In this paper, based on previous research, we discuss the spatial and temporal evolution of the Yanshanian Movement, the controlling tectonic mechanisms, and its relationship to the reactivation and destruction of the NCC and the subduction of the western Paleo-Pacific slab.We emphasize that the Yanshanian Movement in the Middle-Late Jurassic is distinct from the lithospheric thinning responsible for Early Cretaceous extension and magmatism related to the destruction of the NCC. The various tectonic stages were constrained by different dynamics and tectonic settings, or by different tectonic events and processes. Therefore, it is possible that the deformation and reactivation of the NCC contributed to its destruction, in addition to lithospheric thinning. Finally, we discuss whether the Yanshanian Movement was associated with the destruction of the NCC.展开更多
Unlike most Precambrian cratons that have thick sub-continental lithospheric roots,the Archean lithosphere beneath the North China Craton is thin (reduced from 200 km to about 80 km),and has been replaced by a geochem...Unlike most Precambrian cratons that have thick sub-continental lithospheric roots,the Archean lithosphere beneath the North China Craton is thin (reduced from 200 km to about 80 km),and has been replaced by a geochemically juvenile lithospheric mantle.This is a unique regional geological event,which has attracted worldwide attention.In the North China Block,Late Mesozoic extensional tectonics is evident by low-angle detachment faults,syntectonic plutons bounded by ductile faults,metamorphic core complexes (MCC) and widespread Jurassic to Cretaceous half-grabens filled by continental terrigenous deposits and volcanic rocks.At a regional scale,these structures share the same NW-SE extensional direction,while maintaining their own individual kinematics.In other words,the MCC feature a top-to-the-NW sense of shear,and syntectonic plutons are typified by a top-to-the-SE shearing deformations.Geochronological results indicate that the extensional structures were formed between 130-120 Ma.These extensional events lead to magmatic rock emplacement,distributed at the footwall of the detachment faults.Two different exhumation stages can be identified based on regional structural and magmatic interpretation:a Jurassic slow or negligible exhumation and a Cretaceous fast one assisted by normal faulting.These two cooling stages correspond to distinct geodynamic processes that occurred during the Jurassic and Cretaceous.Extensional tectonics appear to have been insignificant before the Early Cretaceous,and the process may be demonstrated by partial melting of the crust.The second stage,dominated by an extensional regime,developed after ca 120 Ma,and is tentatively correlated with crustal extension caused by lithospheric removal of the North China Craton.展开更多
The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can si...The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios(15–70) and^(87)Sr/^(86)Sr ratios(0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios(5–18) and^(87)Sr/^(86)Sr ratios(0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios(5–9) and^(87)Sr/^(86)Sr ratios(0.702–0.704). Deep(garnet-bearing) and shallow(spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts,only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.展开更多
Lithosphere thinning and destruction in the middle-eastern North China Craton(NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. All 42 seismic wide-angle reflect...Lithosphere thinning and destruction in the middle-eastern North China Craton(NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. All 42 seismic wide-angle reflection/refraction profiles have been completed in the middle-eastern NCC. We collect all the 2-D profiling results and perform gridding of the velocity and interface depth data, building a 3-D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, by using the Kriging interpolation method. Our result shows that the first-arrival times calculated by HBCust1.0 fit well with the observations. The result demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C(the interface between upper and lower crust). The depth of interface Moho varies beneath the source area of the Tangshan earthquake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin(NCB) in the east of the craton is obviously higher than the regional average. This high-velocity probably results from long-term underplating of the mantle magma.展开更多
We obtained the 2-D P-wave velocity structure of the lithosphere in the eastern North China Craton, Shanxi fault subsidence zone, and Yinchuan-Hetao fault subsidence zone by ray tracking technology based on six groups...We obtained the 2-D P-wave velocity structure of the lithosphere in the eastern North China Craton, Shanxi fault subsidence zone, and Yinchuan-Hetao fault subsidence zone by ray tracking technology based on six groups of clearly identified crustal phases and one group of lithospheric interface reflection phases from seismic recording sections of 21 shots along the 1300-km-long Yancheng-Baotou deep seismic wide-angle reflection/refraction profile. The results indicate significant differ- ences between the lithospheric structure east and west of the Taihang Mountains, which is a gravity-gradient zone as well as a zone of abrupt change in lithospheric thickness and a separation zone of different rock components. East of the Taihang Mountains, the Mesozoic and Cenozoic lithospheric structure of the North China Craton has undergone strong reformation and destruction, resulting in the lithosphere thickness decreasing to 70-80 km. The North China Basin has a very thick Cenozoic sedimentary cover and the deepest point of crystalline basement is about 7.0 kin, with the crustal thickness decreasing to about 31.0 kin. The crystalline basement of the Luxi uplift zone is relatively shallow with a depth of 1.0-2.0 km and crustal thickness of 33.0-35.0 km. The Subei Basin has a thicker Cenozoic sedimentary cover and the bottom of its crystalline basement is at about 5.0-6.0 km with a crustal thickness of 31.0-32.0 km. The Tanlu fault is a deep fracture which cuts the lithosphere with a significant velocity structure difference on either side of the fault. The Tanlu fault plays an important role in the lithospheric destruction in the eastern part of the North China Craton. West of the Taihang Mountains, the crustal thickness increases sig- nificantly. The crust thickness beneath the Shanxi fault depression zone is about 46 km, and there is a low-velocity structure with a velocity of less than 6.1 km s-~ in the upper part of the middle crust. Combined with other geophysical study results, our data shows that the lithospheric destruction at the Shaanxi-Shanxi fault depression zone and the Yinchuan-Hetao rift surround- ing the Ordos block is non-uniform. The lithosphere thickness is about 80-90 km in the Datong-Baotou area, 75-137 km at the Dingxiang-Shenmu region, and about 80-120 km in the Anyang-Yichuan area. The non-uniform lithospheric destruction may be related to the ancient tectonic zone surrounding the Ordos block. This zone experienced multi-period tectonic events in the long-term process of its tectonic evolution and was repeatedly transformed and weakened. The weakening level is related to the interactions with the Ordos block. The continental collision between the Cenozoic India and Eurasia plates and N-E thrust- ing by the Qinghai Tibet Plateau block is causing further reformation and reduction of the lithosphere.展开更多
基金The Natural gas formation rules and key technologies for exploration in the western exploration area KT2022A02the Science and Technology Fundamental Resources Investigation Program under contract No. 2023FY101500+2 种基金the National Key Research and Development Program of China under contract No. 2023YFC3012005the Central Public-interest Scientific Institution Basal Researchunder contract No. CEAIEF20230505。
文摘At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.
基金supported by the National Natural Science Foundation of China (Grant No. 90914004)
文摘The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the eastern Asian continent and margin. The Yanshanian Movement was a globally important change in crustal tectonics during the Middle-Late Jurassic.Previous research has systematically studied the formation and evolution of the Yanshanian Movement, focusing on the timing and location of tectonic movements, and the sedimentary and volcanic strata. However, the question of whether the tectonic activity occurred globally, and the characteristics of the Yanshanian Movement remain debated. The main argument is that if a tectonic movement can only be characterized by a regional or local disconformity, and if the tectonic movement occurred in an intracontinental setting, with extensive deformation but with no disconformity despite volcanic eruptions and magmatic intrusions, accompanied by changes in crustal structure and composition, should it be defined as a tectonic event or process? This question requires further analysis. The main aim of this study is to distinguish whether the Yanshanian Movement is a local feature of the eastern Asian continent, or a global tectonic event related to subduction of the Pacific Plate. In this paper, based on previous research, we discuss the spatial and temporal evolution of the Yanshanian Movement, the controlling tectonic mechanisms, and its relationship to the reactivation and destruction of the NCC and the subduction of the western Paleo-Pacific slab.We emphasize that the Yanshanian Movement in the Middle-Late Jurassic is distinct from the lithospheric thinning responsible for Early Cretaceous extension and magmatism related to the destruction of the NCC. The various tectonic stages were constrained by different dynamics and tectonic settings, or by different tectonic events and processes. Therefore, it is possible that the deformation and reactivation of the NCC contributed to its destruction, in addition to lithospheric thinning. Finally, we discuss whether the Yanshanian Movement was associated with the destruction of the NCC.
基金supported by the Innovative Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q05-05-03)the National Natural Science Foundation of China (Grants Nos. 90714007,40872142)
文摘Unlike most Precambrian cratons that have thick sub-continental lithospheric roots,the Archean lithosphere beneath the North China Craton is thin (reduced from 200 km to about 80 km),and has been replaced by a geochemically juvenile lithospheric mantle.This is a unique regional geological event,which has attracted worldwide attention.In the North China Block,Late Mesozoic extensional tectonics is evident by low-angle detachment faults,syntectonic plutons bounded by ductile faults,metamorphic core complexes (MCC) and widespread Jurassic to Cretaceous half-grabens filled by continental terrigenous deposits and volcanic rocks.At a regional scale,these structures share the same NW-SE extensional direction,while maintaining their own individual kinematics.In other words,the MCC feature a top-to-the-NW sense of shear,and syntectonic plutons are typified by a top-to-the-SE shearing deformations.Geochronological results indicate that the extensional structures were formed between 130-120 Ma.These extensional events lead to magmatic rock emplacement,distributed at the footwall of the detachment faults.Two different exhumation stages can be identified based on regional structural and magmatic interpretation:a Jurassic slow or negligible exhumation and a Cretaceous fast one assisted by normal faulting.These two cooling stages correspond to distinct geodynamic processes that occurred during the Jurassic and Cretaceous.Extensional tectonics appear to have been insignificant before the Early Cretaceous,and the process may be demonstrated by partial melting of the crust.The second stage,dominated by an extensional regime,developed after ca 120 Ma,and is tentatively correlated with crustal extension caused by lithospheric removal of the North China Craton.
基金co-supported by the National Key R&D Program of China(Grant No.2016YFC0600103)the National Natural Science Foundation of China(Grant Nos.41473031,41530211)+1 种基金the National Program on Key Basic Research Project(Grant No.2015CB856101)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant No.MSFGPMR01)
文摘The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios(15–70) and^(87)Sr/^(86)Sr ratios(0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios(5–18) and^(87)Sr/^(86)Sr ratios(0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios(5–9) and^(87)Sr/^(86)Sr ratios(0.702–0.704). Deep(garnet-bearing) and shallow(spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts,only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90814012, 91014006, 91414301, 41174052 & 41274113)
文摘Lithosphere thinning and destruction in the middle-eastern North China Craton(NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. All 42 seismic wide-angle reflection/refraction profiles have been completed in the middle-eastern NCC. We collect all the 2-D profiling results and perform gridding of the velocity and interface depth data, building a 3-D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, by using the Kriging interpolation method. Our result shows that the first-arrival times calculated by HBCust1.0 fit well with the observations. The result demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C(the interface between upper and lower crust). The depth of interface Moho varies beneath the source area of the Tangshan earthquake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin(NCB) in the east of the craton is obviously higher than the regional average. This high-velocity probably results from long-term underplating of the mantle magma.
基金supported by the National Natural Science Foundation of China(Grant Nos.91214205,41174052)the Special Scientific Research of Seismologic Industry(Grant No.200908001)
文摘We obtained the 2-D P-wave velocity structure of the lithosphere in the eastern North China Craton, Shanxi fault subsidence zone, and Yinchuan-Hetao fault subsidence zone by ray tracking technology based on six groups of clearly identified crustal phases and one group of lithospheric interface reflection phases from seismic recording sections of 21 shots along the 1300-km-long Yancheng-Baotou deep seismic wide-angle reflection/refraction profile. The results indicate significant differ- ences between the lithospheric structure east and west of the Taihang Mountains, which is a gravity-gradient zone as well as a zone of abrupt change in lithospheric thickness and a separation zone of different rock components. East of the Taihang Mountains, the Mesozoic and Cenozoic lithospheric structure of the North China Craton has undergone strong reformation and destruction, resulting in the lithosphere thickness decreasing to 70-80 km. The North China Basin has a very thick Cenozoic sedimentary cover and the deepest point of crystalline basement is about 7.0 kin, with the crustal thickness decreasing to about 31.0 kin. The crystalline basement of the Luxi uplift zone is relatively shallow with a depth of 1.0-2.0 km and crustal thickness of 33.0-35.0 km. The Subei Basin has a thicker Cenozoic sedimentary cover and the bottom of its crystalline basement is at about 5.0-6.0 km with a crustal thickness of 31.0-32.0 km. The Tanlu fault is a deep fracture which cuts the lithosphere with a significant velocity structure difference on either side of the fault. The Tanlu fault plays an important role in the lithospheric destruction in the eastern part of the North China Craton. West of the Taihang Mountains, the crustal thickness increases sig- nificantly. The crust thickness beneath the Shanxi fault depression zone is about 46 km, and there is a low-velocity structure with a velocity of less than 6.1 km s-~ in the upper part of the middle crust. Combined with other geophysical study results, our data shows that the lithospheric destruction at the Shaanxi-Shanxi fault depression zone and the Yinchuan-Hetao rift surround- ing the Ordos block is non-uniform. The lithosphere thickness is about 80-90 km in the Datong-Baotou area, 75-137 km at the Dingxiang-Shenmu region, and about 80-120 km in the Anyang-Yichuan area. The non-uniform lithospheric destruction may be related to the ancient tectonic zone surrounding the Ordos block. This zone experienced multi-period tectonic events in the long-term process of its tectonic evolution and was repeatedly transformed and weakened. The weakening level is related to the interactions with the Ordos block. The continental collision between the Cenozoic India and Eurasia plates and N-E thrust- ing by the Qinghai Tibet Plateau block is causing further reformation and reduction of the lithosphere.