The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in severe environmental problems. Accurate estimation of cro...The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in severe environmental problems. Accurate estimation of crop water consumption and net irrigation water consumption is crucial to guarantee the management of agricultural water resources. An actual crop evapotranspiration(ET) estimation model was proposed, by combining FAO Penman-Monteith method with remote sensing data. The planting area of winter wheat has a significant impact on water consumption; therefore, the planting area was also retrieved. The estimated ET showed good agreement with field-observed ET at four stations. The average relative bias and root mean square error(RMSE) for ET estimation were –2.2% and 25.5 mm, respectively. The results showed the planting area and water consumption of winter wheat had a decreasing trend in the Northern Hebei Plain(N-HBP) and Southern Hebei Plain(S-HBP). Moreover, in these two regions, there was a significant negative correlation between accumulated net irrigation water consumption and groundwater table. The total net irrigation water consumption in the N-HBP and S-HBP accounted for 12.9×10~9 m^3 and 31.9×10~9 m^3 during 2001–2016, respectively. Before and after 2001, the decline rate of groundwater table had a decreasing trend, as did the planting area of winter wheat in the N-HBP and S-HBP. The decrease of winter wheat planting area alleviated the decline of groundwater table in these two regions while the total net irrigation water consumption was both up to 28.5×10~9 m^3 during 2001–2016 in the Northwestern Shandong Plain(NW-SDP) and Northern Henan Plain(N-HNP). In these two regions, there was no significant correlation between accumulated net irrigation water consumption and groundwater table. The Yellow River was able to supply irrigation and the groundwater table had no significant declining trend.展开更多
为了获取不同农作物的空间分布信息,以华北平原黄河以北地区为研究区域,利用Savitzky-Golay滤波对2014—2016年的时间序列叶面积指数(leaf area index,LAI)进行重构,进而应用一阶差分法和重构LAI的傅里叶变换的谐波特征对研究区域主要...为了获取不同农作物的空间分布信息,以华北平原黄河以北地区为研究区域,利用Savitzky-Golay滤波对2014—2016年的时间序列叶面积指数(leaf area index,LAI)进行重构,进而应用一阶差分法和重构LAI的傅里叶变换的谐波特征对研究区域主要农作物冬小麦、玉米和棉花种植区域进行识别和提取,并对不同作物的识别精度进行验证。结果表明,基于Savitzky-Golay滤波重构的LAI能够去除由云、大气等因素造成的LAI骤降的影响,重构LAI曲线平滑且符合作物的生长规律特征。研究区域2014—2016年作物识别的总体精度均大于80.00%,2015年达到87.08%,冬小麦-夏玉米、春玉米、棉花和单季夏玉米的识别精度分别为92.50%、80.00%、85.00%和82.50%,表明利用一阶差分法能够准确提取研究区域一年一季和一年两季作物种植区域。结合傅里叶变换方法和作物物候信息能够有效地识别不同作物的种植区域,进而获取研究区域主要农作物的分布信息。该研究可为研究区域主要作物的长势监测及产量估测预测提供参考。展开更多
基金National Natural Science Foundation of China,No.41471027National Key Research and Development Plan,No.2016YFC0401403
文摘The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in severe environmental problems. Accurate estimation of crop water consumption and net irrigation water consumption is crucial to guarantee the management of agricultural water resources. An actual crop evapotranspiration(ET) estimation model was proposed, by combining FAO Penman-Monteith method with remote sensing data. The planting area of winter wheat has a significant impact on water consumption; therefore, the planting area was also retrieved. The estimated ET showed good agreement with field-observed ET at four stations. The average relative bias and root mean square error(RMSE) for ET estimation were –2.2% and 25.5 mm, respectively. The results showed the planting area and water consumption of winter wheat had a decreasing trend in the Northern Hebei Plain(N-HBP) and Southern Hebei Plain(S-HBP). Moreover, in these two regions, there was a significant negative correlation between accumulated net irrigation water consumption and groundwater table. The total net irrigation water consumption in the N-HBP and S-HBP accounted for 12.9×10~9 m^3 and 31.9×10~9 m^3 during 2001–2016, respectively. Before and after 2001, the decline rate of groundwater table had a decreasing trend, as did the planting area of winter wheat in the N-HBP and S-HBP. The decrease of winter wheat planting area alleviated the decline of groundwater table in these two regions while the total net irrigation water consumption was both up to 28.5×10~9 m^3 during 2001–2016 in the Northwestern Shandong Plain(NW-SDP) and Northern Henan Plain(N-HNP). In these two regions, there was no significant correlation between accumulated net irrigation water consumption and groundwater table. The Yellow River was able to supply irrigation and the groundwater table had no significant declining trend.
文摘为了获取不同农作物的空间分布信息,以华北平原黄河以北地区为研究区域,利用Savitzky-Golay滤波对2014—2016年的时间序列叶面积指数(leaf area index,LAI)进行重构,进而应用一阶差分法和重构LAI的傅里叶变换的谐波特征对研究区域主要农作物冬小麦、玉米和棉花种植区域进行识别和提取,并对不同作物的识别精度进行验证。结果表明,基于Savitzky-Golay滤波重构的LAI能够去除由云、大气等因素造成的LAI骤降的影响,重构LAI曲线平滑且符合作物的生长规律特征。研究区域2014—2016年作物识别的总体精度均大于80.00%,2015年达到87.08%,冬小麦-夏玉米、春玉米、棉花和单季夏玉米的识别精度分别为92.50%、80.00%、85.00%和82.50%,表明利用一阶差分法能够准确提取研究区域一年一季和一年两季作物种植区域。结合傅里叶变换方法和作物物候信息能够有效地识别不同作物的种植区域,进而获取研究区域主要农作物的分布信息。该研究可为研究区域主要作物的长势监测及产量估测预测提供参考。