期刊文献+
共找到589篇文章
< 1 2 30 >
每页显示 20 50 100
Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land–Air–Sea Interaction Perspective 被引量:18
1
作者 Anmin DUAN Ruizao SUN Jinhai HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期157-168,共12页
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th... The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework. 展开更多
关键词 Tibetan Plateau surface sensible heating western pacific subtropical high ENSO tropical air-sea interaction
下载PDF
Anomalous Western Pacific Subtropical High during Late Summer in Weak La Nia Years: Contrast between 1981 and 2013 被引量:11
2
作者 Feng XUE Fangxing FAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第12期1351-1360,共10页
Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly ... Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak. 展开更多
关键词 western pacific subtropical high late summer tropical circulation high latitude circulation warm pool convection
下载PDF
The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hPa Eddy Geopotential Height 被引量:7
3
作者 HUANG Yan-Yan LI Xiao-Fan 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第6期371-375,共5页
The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the int... The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the interdecadal variation of the horizontal winds,relative vorticity,and eddy geopotential height over the western Pacific are all analyzed.The weakened anticyclone and decreased negative relative vorticity at middle-low levels over the western Pacific suggest that the WPSH weakened during 1979–2009 relative to1948–78.After subtracting the zonal belt mean height between 0°and 40°N,the 500 hP a eddy geopotential height with significant negative anomalies over the western Pacific can correctly depict this weakened interdecadal variation of the WPSH.The illusory westward extension signal reflected by the 500 h Pa geopotential height may derive from the significant increment of the geopotential height at middle and lower latitudes in the late 1970s under global warming. 展开更多
关键词 western pacific subtropical high INTERDECADAL VARI
下载PDF
Interdecadal change in Western Pacific Subtropical High and climatic effects 被引量:11
4
作者 HE Xue-zhao1, GONG Dao-yi1,2 (1. Laboratory of Environmental Change and Natural Disaster Research, Institute of Resources Science, Beijing Normal University, Beijing 100875, China 2. School of Earth and Environmental Sciences, Seoul National University 《Journal of Geographical Sciences》 SCIE CSCD 2002年第2期79-86,共8页
Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant de... Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant decadal shift in about 1979/1980. Since 1980, the Western North Pacific Subtropical High has enlarged, intensified, and shifted southwestward. This change gives rise to an anti-cyclonic circulation anomaly over the region from the South China Sea to western Pacific and thus causes wet anomalies over the Yangtze River valley. During the summers of 1980-1999, the precipitation is 63.9 mm above normal, while during 1958-1979 it is 27.3 mm below normal. The difference is significant at the 99% confidence level as a t-test shown. The southwestward expanding of the Western North Pacific Subtropical High also leads to a significant warming in southern China, during 1980-1999 the summer mean temperature is 0.37篊 warmer than that of the period 1958-1979. The strong warming is primarily due to the clearer skies associated with the stronger downward air motion as the Western North Pacific Subtropical High expanding to the west and controlling southern China. It is also found that the relative percentage of tropical cyclones in the regions south of 20篘 is decreasing since the 1980s, but in the regions north of 20篘 that is increasing at the same time. The Western North Pacific Subtropical High responds significantly to sea surface temperature of the tropical eastern Pacific with a lag of one-two seasons and simultaneously to sea surface temperature of the tropical Indian Ocean. The changes in the sea surface temperatures are mainly responsible for the interdecadal variability of the Western North Pacific Subtropical High. 展开更多
关键词 Western pacific subtropical high interdecadal change climate change
下载PDF
Anomalous Western Pacific Subtropical High during El Nino Developing Summer in Comparison with Decaying Summer 被引量:7
5
作者 Feng XUE Xiao DONG Fangxing FAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第3期360-367,共8页
The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPS... The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to E1 Nifio forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer. 展开更多
关键词 western pacific subtropical high El Nifio developing summer decaying summer seasonal march
下载PDF
Vertical Circulation Structure, Interannual Variation Features and Variation Mechanism of Western Pacific Subtropical High 被引量:14
6
作者 何金海 周兵 +1 位作者 温敏 李峰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期497-510,共14页
The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal ... The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal forcing by using the high-resolution and good-quality observations from the 1998 South China Sea Summer Monsoon Experiment (SCSMEX), the NCEP 40-year reanalysis data and relevant SST and the STH parameters. It is found that the vertical circulation structures differ greatly in features between quasi-Stationary and transient components of the western Pacific STH. When rainstorms happen in the rainband of East Asian subtropical monsoon on the STH north side, the downdrafts are distinct around the ridge at a related meridian. The sinking at high (low) levels comes from the north (south) side of the STH, thereby revealing that the high is a tie between tropical and extratropical systems. The analyses of this paper suggest that the latent heat release associated with subtropical monsoon precipitation, the offshore SST and East Asian land-sea thermal contrast have a significant effect on the STH interannual anomaly. Our numerical experiment shows that the offshore SSTA-caused sensible heating may excite an anomalous anticyclonic circulation on the west side, which affects the intensity (area) and meridional position of the western Pacific STH. 展开更多
关键词 Western pacific subtropical high. Meridional/zonal circulation Interannual variation Offshore sea surface tomperature
下载PDF
Two Northward Jumps of the Summertime Western Pacific Subtropical High and Their Associations with the Tropical SST Anomalies 被引量:13
7
作者 SU Tong-Hua XUE Feng 《Atmospheric and Oceanic Science Letters》 2011年第2期98-102,共5页
Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical S... Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical SST anomalies. The authors show that the northward jumps, especially the second jump, exhibited remarkable interannual variability. In addition, the authors find that the two northward jumps were mutually independent and were influenced by the SST anomalies in the different regions of the tropical Pacific. The first jump was positively correlated with the SST anomalies in the tropical central Pacific from the preceding winter to June. In contrast, the second jump was positively related to ENSO in the preceding winter, but this correlation tended to weaken with the decay of ENSO and disappeared in July. Instead, a positive correlation was found in the Indian Ocean. We therefore suggest that ENSO plays an indirect role in the second jump through the capacitor effect of the Indian Ocean. 展开更多
关键词 western pacific subtropical high northward iump sea surface temperature anomaly ENSO
下载PDF
Numerical Simulation of the Relationship between the Anomaly of Subtropical High over East Asia and the Convective Activities in the Western Tropical Pacific 被引量:40
8
作者 黄荣辉 卢里 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第2期202-214,共13页
In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This re... In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America. 展开更多
关键词 OVER Numerical Simulation of the Relationship between the Anomaly of subtropical high over East Asia and the Convective Activities in the Western Tropical pacific Asia
下载PDF
VARIABILITY IN THE WESTERN PACIFIC SUBTROPICAL HIGH AND ITS RELATIONSHIP WITH SEA TEMPERATURE VARIATION CONSIDERING THE BACKGROUND OF CLIMATE WARMING OVER THE PAST 60 YEARS 被引量:4
9
作者 SUN Sheng-jie LI Dong-liang 《Journal of Tropical Meteorology》 SCIE 2018年第4期468-480,共13页
By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Resear... By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research(NCEP/NCAR) reanalysis data, and the National Oceanic and Atmospheric Administration(NOAA) sea surface temperature(SST) data, we studied the WPSH variability considering the background of climate warming by using a Gaussian filter, moving averages, correlation analysis, and synthetic analysis. Our results show that with climate warming over the past 60 years, significant changes in the WPSH include its enlarged area, strengthened intensity,westward extended ridge point and southward expanded southern boundary, as well as enhanced interannual fluctuations in all these indices. The western ridge point of the WPSH consistently varies with temperature changes in the Northern Hemisphere, but the location of the ridgeline varies independently. The intensity and area of the WPSH were both significantly increased in the late 1980 s. Specifically, the western ridge point started to significantly extend westward in the early 1990 s, and the associated interannual variability had a significant increase in the late 1990 s; in addition, the ridgeline was swaying along the north-south-north direction, and the corresponding variability was also greatly enhanced in the late 1990 s. With climate warming, the SST increase becomes more weakly correlated with the WPSH intensity enhancement but more strongly correlated with the westward extension of the ridge point in the equatorial central and eastern Pacific Ocean in winter, corresponding to an expanding WPSH in space. In the northern Pacific in winter, the SST decrease has a weaker correlation with the southerly location of the ridgeline but also a stronger correlation with the westward extension of the ridge point. In the tropical western Pacific in winter, the correlations of the SST decrease with the WPSH intensity enhancement, and the westward extension of the ridge point is strengthened. These observations can be explained by strengthened Hadley circulations, the dominant effects of the southward shift, and additional effects of the weakened ascending branch of the Walker circulation during warm climatological periods,which consequently lead to strengthened intensities, increased areas, and southward expansions of the WPSH in summer. 展开更多
关键词 climatological TEMPERATURE FLUCTUATION Western pacific subtropical high (WPSH) characteristic variations sea surface TEMPERATURE (SST) vertical circulation
下载PDF
Seasonal Prediction of the Record-Breaking Northward Shift of the Western Pacific Subtropical High in July 2021 被引量:6
10
作者 Shuai HU Tianjun ZHOU +1 位作者 Bo WU Xiaolong CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期410-427,共18页
The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captu... The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively. 展开更多
关键词 western pacific subtropical high seasonal prediction seasonal predictability La Niña pacific-Japan pattern
下载PDF
A Diagnostic Study on the Relationship between the Assembling of Low Frequency Waves in the Pacific Ocean and the Abnormality of the Subtropical High 被引量:3
11
作者 章建文 喻世华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第2期114-124,共11页
By use of the filter analysis technique, the Complex Empirical Othogonal Function (CEOF) method and the ECMWF/WMO 2.5°×2.5°grid data of the geopotential heights during the summer months in 1988, an inte... By use of the filter analysis technique, the Complex Empirical Othogonal Function (CEOF) method and the ECMWF/WMO 2.5°×2.5°grid data of the geopotential heights during the summer months in 1988, an interseasonal process that the western Pacific subtropical high (WPSH) was anomalously far to the north in the first and second ten days of July is studied. It has been found that in the western Pacific subtropical region in the first and second ten days of July,it is the continuous assembly of low frequency geopotential waves (LFGWs) that leads to the abnormality of WPSH. This abnormality emerges with the enhancement of wave assembling and ceases while the wave assembling situation disappears. The structure of the low frequency assembling waves corresponds to the structure of subtropical high in its abnormal period. The effect of the assembling waves on the abnormality of subtropical high can be considered as the accumulation of disturbance energy carried by the low frequency waves from different directions in the western Pacific region. 展开更多
关键词 Abnormality of subtropical high CEOF method Low frequency wave assembling Western pacific Ocean
下载PDF
THE POSITION VARIATION OF THE WEST PACIFIC SUBTROPICAL HIGH AND ITS POSSIBLE MECHANISM 被引量:6
12
作者 王黎娟 管兆勇 何金海 《Journal of Tropical Meteorology》 SCIE 2006年第2期113-120,共8页
Using NCEP/NCAR daily reanalysis data and SCSMEX data, an investigation is carried out of the relationship between the position variation of the west Pacific subtropical high (WPSH) and the apparcnt heating in June ... Using NCEP/NCAR daily reanalysis data and SCSMEX data, an investigation is carried out of the relationship between the position variation of the west Pacific subtropical high (WPSH) and the apparcnt heating in June 1998 based on the complete vertical vorticlty equation. It is tbund that the non-adiabatic heating plays an important role in the position variation of WPSH. In comparison with climatic mean status, the vertical change of non-adiabatic heating is stronger in the north side of WPSH in June 1998, but weaker in the south side of WPSH. The anomalous non-uniform heating induces anomalous cyclonic vorticity in South China, areas to lhe south of the Yangtze and its mid-lower valleys, but anomalous anticyclonic vorticity in the Indo-China Peninsula and South China Sea areas lead to the more southward position of WPSH than the mean. 展开更多
关键词 West pacific subtropical high position variation apparent heating
下载PDF
COMPARISONS OF THE WEST PACIFIC SUBTROPICAL HIGH AND THE SOUTH ASIA HIGH BETWEEN NCEP/NCAR AND ECMWF REANALYSIS DATASETS 被引量:4
13
作者 陈雯 智协飞 《Journal of Tropical Meteorology》 SCIE 2008年第2期121-124,共4页
Comparisons of the west Pacific subtropical high with the South Asia High are made using the NCEP/NCAR and ECMWF 500 hPa and 100 hPa monthly boreal geopotential height fields for the period 1961-2000. Discrepancies ar... Comparisons of the west Pacific subtropical high with the South Asia High are made using the NCEP/NCAR and ECMWF 500 hPa and 100 hPa monthly boreal geopotential height fields for the period 1961-2000. Discrepancies are found for the time prior to 1980. The west Pacific subtropical high in the NCEP/NCAR data is less intense than in ECMWF data before 1980. The range and strength of the west Pacific subtropical high variation described by the NCEP/NCAR data are larger than those depicted by ECMWF data. The same situation appears in the 100-hPa geopotential field. These discoveries suggest that the interdecadal variation of the two systems as shown by the NCEP/NCAR data may not be true. Besides, the South Asia High center in the NCEP/NCAR data is obviously stronger than in the ECMWF data during the periods 1969, 1979-1991 and 1992-1995. Furthermore, the range is larger from 1992 to 1995. 展开更多
关键词 reanalysis datasets west pacific subtropical high South Asia high comparisons
下载PDF
Different Configurations of Interannual Variability of the Western North Pacific Subtropical High and East Asian Westerly Jet in Summer 被引量:4
14
作者 Xinyu LI Riyu LU Gen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期931-942,共12页
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interan... This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity. 展开更多
关键词 western North pacific subtropical high East Asian westerly jet CIRCULATION RAINFALL sea surface temperature
下载PDF
CHARACTERISTICS AND CAUSE ANALYSIS OF WESTERN PACIFIC SUBTROPICAL HIGH DURING THE HUAIHE RIVER FLOODS IN 2003 被引量:4
15
作者 金荣花 矫梅燕 +1 位作者 徐晶 秦华锋 《Journal of Tropical Meteorology》 SCIE 2006年第1期97-98,共2页
1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation pat... 1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation patterns over China. Therefore, subtropical high activity and its cause during the occurrence of extreme climatic event over China and the cause of China drought/flood are studied to improve weather forecasting. 展开更多
关键词 the Huaihe River floods Western pacific subtropical high abnormal characteristics cause analysis
下载PDF
RELATIONSHIPS BETWEEN THE POSITION VARIATION OF THE WEST PACIFIC SUBTROPICAL HIGH AND THE DIABATIC HEATING DURING PERSISTENT INTENSE RAIN EVENTS IN YANGTZE-HUAIHE RIVERS BASIN 被引量:4
16
作者 王黎娟 陈璇 +1 位作者 管兆勇 曾明剑 《Journal of Tropical Meteorology》 SCIE 2012年第4期528-536,共9页
By using NCEP/NCAR daily reanalysis data and daily precipitation data of 740 stations in China, relationships between the position variation of the West Pacific subtropical high (WPSH) and the diabatic heating during ... By using NCEP/NCAR daily reanalysis data and daily precipitation data of 740 stations in China, relationships between the position variation of the West Pacific subtropical high (WPSH) and the diabatic heating during persistent and intense rains in the Yangtze-Huaihe Rivers basin are studied. The results show that the position variation of WPSH is closely associated with the diabatic heating. There are strong apparent heating sources and moisture sinks in both the basin (to the north of WPSH) and the north of Bay of Bengal (to the west of WPSH) during persistent and intense rain events. In the basin, Q 1z begins to increase 3 days ahead of intense rainfall, maximizes 2 days later and then reduces gradually, but it changes little after precipitation ends, thus preventing the WPSH from moving northward. In the north of Bay of Bengal, 2 days ahead of strong rainfall over the basin, Q 1z starts to increase and peaks 1 day after the rain occurs, leading to the westward extension of WPSH. Afterwards, Q 1z begins declining and the WPSH makes its eastward retreat accordingly. Based on the complete vertical vorticity equation, in mid-troposphere, the vertical variation of heating in the basin is favorable to the increase of cyclonic vorticity north of WPSH, which counteracts the northward movement of WPSH and favors the persistence of rainbands over the basin. The vertical variation of heating in the north of Bay of Bengal is in favor of the increase of anti-cyclonic vorticity to the west of WPSH, which induces the westward extension of WPSH. 展开更多
关键词 west pacific subtropical high complete vertical vorticity equation persistent heavy rain events overYangtze-Huaihe rivers basin diabatic heating
下载PDF
IMPACT OF THE HEATING OVER SOUTH ASIA UPON THE SUBTROPICAL HIGH OVER WEST-PACIFIC 被引量:1
17
作者 李双林 纪立人 《Journal of Tropical Meteorology》 SCIE 1999年第2期141-152,共12页
A case is reported, during which the Subtropical High over the Western Pacific (hereafter, SHWP in abbreviation) shifted northwestward and met-yu at Chaniiang River valley ended. Several numerical experiments onSHWP a... A case is reported, during which the Subtropical High over the Western Pacific (hereafter, SHWP in abbreviation) shifted northwestward and met-yu at Chaniiang River valley ended. Several numerical experiments onSHWP activity influenced by the heating over south Asia monsoon area are carried out, and the statistic significance of the results is checked. The results indicate that the enhancement of positive heating over South Asia willmotivate a wave-like series of anomaly centers, which propagate northeastward from the maximum heating center.so that a strong positive potential height anomaly center will set up from North China to Japan at Day X resultingin the enhancement of SHWP. Comparison of the influence upon SHWP by the heating over south Asia monsoonarea with that over ITCZ area south to SHWP is also carried out. It is pointed out that the heating over South Asiamonsoon area tends to favor SHWP north\vard movement while the heating over ITCZ area tends to thvor SHWPwestward stretching. As for the time to begin to influence on SHWP, the heating over south Asia monsoon areafavors the enhancement of SHWP atter Day 3 while that over ITCZ south to SHWP effects atter Day 5. 展开更多
关键词 HEATING OVER south Asia MONSOON west pacific subtropical high numerical experiments
下载PDF
Predicting Western Pacific Subtropical High Using a Combined Tropical Indian Ocean Sea Surface Temperature Forecast 被引量:2
18
作者 WANG Li-Wei ZHENG Fei ZHU Jiang 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第6期405-409,共5页
Weather and climate in East China are closely related to the variability of the western Pacific subtropical high(WPSH), which is an important part of the Asian monsoon system. The WPSH prediction in spring and summer ... Weather and climate in East China are closely related to the variability of the western Pacific subtropical high(WPSH), which is an important part of the Asian monsoon system. The WPSH prediction in spring and summer is a critical component of rainfall forecasting during the summer flood season in China. Although many attempts have been made to predict WPSH variability, its predictability remains limited in practice due to the complexity of the WPSH evolution. Many studies have indicated that the sea surface temperature(SST) over the tropical Indian Ocean has a significant effect on WPSH variability. In this paper, a statistical model is developed to forecast the monthly variation in the WPSH during the spring and summer seasons on the basis of its relationship with SST over the tropical Indian Ocean. The forecasted SST over the tropical Indian Ocean is the predictor in this model, which differs significantly from other WPSH prediction methods. A 26-year independent hindcast experiment from 1983 to 2008 is conducted and validated in which the WPSH prediction driven by the combined forecasted SST is compared with that driven by the persisted SST. Results indicate that the skill score of the WPSH prediction driven by the combined forecasted SST is substantial. 展开更多
关键词 western pacific subtropical high SST tropical Indian Ocean statistical prediction
下载PDF
Modeling and Diagnostic Studies on the Variations of the Subtropical High over the Western Pacific from 1880 to 1999 被引量:1
19
作者 王绍武 蔡静宁 +3 位作者 慕巧珍 谢志辉 朱锦红 龚道溢 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第6期1148-1152,共5页
Index series of Subtropical High over the western Pacific was extended to AD 1880 by using of statistical and modeling method. Reconstructed indices by both methods show good accordance each other. Association of the ... Index series of Subtropical High over the western Pacific was extended to AD 1880 by using of statistical and modeling method. Reconstructed indices by both methods show good accordance each other. Association of the indices to the rainfall patterns over eastern China indicated the robustness of the reconstructions. 展开更多
关键词 subtropical high over the western pacific MODELING DIAGNOSTICS
下载PDF
Characteristics of the Correlation between Regional Water Vapor Transport along with the Convective Action and Variation of the Pacific Subtropical High in 1998 被引量:1
20
作者 徐祥德 周丽 +1 位作者 张胜军 苗秋菊 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第2期269-284,共16页
This paper explores the impact of the convective action over the low-latitude region, the water vapor transport around the West Pacific subtropical high (WPSH), and its convective action on the seasonal northward jump... This paper explores the impact of the convective action over the low-latitude region, the water vapor transport around the West Pacific subtropical high (WPSH), and its convective action on the seasonal northward jump and southward withdrawal of the WPSH in summer by using the daily data set of NCEP and TBB for 1998. The research shows that in summer, the WPSH moves northward when the convection over the low-latitude tropical region intensifies and the subsidence region of the meridional vertically vertical circulation in meridional direction circulation over the region of 110?150癊 moves northward. Furthermore, as revealed by diagnostic analysis, the subtropical high moves northward after the obvious weakening of the longitudinal water vapor transport over the region around the subtropical high, but withdraws southward a pentad after the reduction of the latitudinal water vapor transport over the tropical West Pacific region. The research results show that the northward jump and southward withdrawal of the WPSH are closely related to the release of the convective latent heat at low latitudes and the water vapor transport at boundaries around WPSH and its convective action. The numerical simulation further validates the above-mentioned correlation between the variation of the action of the subtropical high and the preceding water vapor transport along with the convection characteristics. 展开更多
关键词 West pacific subtropical high seasonal northward jump and southward withdrawal convec-tion over low-latitudes water vapor transport
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部