Using satellite images taken on different dates,GIS analysis of aerial photos,bathymetric maps and other field survey data,tidal troughs and major sand ridges in the northern Jiangsu coastal area were contrasted.The r...Using satellite images taken on different dates,GIS analysis of aerial photos,bathymetric maps and other field survey data,tidal troughs and major sand ridges in the northern Jiangsu coastal area were contrasted.The results show that there have been three types of movement or migration of tidal trough in this area:(1) Periodic and restricted,this type of trough usually developed along the beaches with immobile gully head as a result of the artificial dams and the swing range increased from gully head to the low reaches,so they have been obviously impacted by human activity and have longer swing periods;(2) Periodic and actively,this kind of trough,which swung with a fast rate and moved periodically on sand ridges,were mainly controlled by the swings of the host tidal troughs and hydrodynamic forces upon tidal sand ridge and influenced slightly by human constructions;(3) Steadily and slowly,they are the main tidal troughs with large scale and a steady orientation in this area and have slow lateral movement.The differences in migration mode of tidal trough shift result in different rates of migration and impact upon tidal sand ridges.Lateral accumulation on current tidal trough and deposition on abandoned tidal troughs are the two types of sedimentation of the tidal sand ridges formation.The whole radial sand ridge was generally prone to division and retreat although sand ridges fluctuated by the analysis of changes in talwegs of tidal troughs and shorelines of sand ridges.展开更多
Careful soil management is important for the soil quality and productivity improvement of the reclaimed coastal tidal flat saline land in northern Jiangsu Province, China. Farmyard manure( FYM) and mulch application...Careful soil management is important for the soil quality and productivity improvement of the reclaimed coastal tidal flat saline land in northern Jiangsu Province, China. Farmyard manure( FYM) and mulch applications, which affect soil characteristics and plant significantly, are regard as an effective pattern of saline land improvement. As a conventional management in the study region, FYM and mulch are used for the amendment of the new reclaimed tidal flat regularly, but little is known about their effects on soil physical properties functioning. A study was conducted on a typical coastal tidal flat saline land, which was reclaimed in 2005, to evaluate the effects of FYM, polyethylene film mulch(PM), straw mulch(SM), FYM combined with PM(FYM+PM), FYM combined with SM(FYM+SM), on soil hydraulic properties and soil mechanical impedance. CK represented conventional cultivation in study area without FYM and mulch application and served as a control. The experiment, laid out in a randomized complete block design with three replications, was studied in Huanghaiyuan Farm, which specialized in the agricultural utilization for coastal tidal flat. Result showed that capillary water holding capacity(CHC), saturated water content(SWC), saturated hydraulic conductivity( Ks) and bulk density(BD), cone index(CI) were affected significantly by the FYM and mulch application, especially in the 0-10 cm soil layer. FYM and mulch management increased CHC, SWC and Ks over all soil depth in the order of FYM+SM〉FYM+PM〉FYM〉SM〉PM〉CK. With the contrary sequence, BD and CI decreased significantly; however, FYM and mulch application affected BD and CI only in the upper soil layers. CHC, SWC and Ks decreased significantly with the increasing of soil depth, BD and CI, and a significant liner equation was found between CHC, SWC, Ks and BD, CI. With the highest CHC(38.15%), SWC(39.55%), Ks(6.00 mm h-1) and the lowest BD(1.26 g cm-3) and CI(2.71 MPa), the combined management of FYM and SM was recommend to be an effective method for the melioration of reclaimed coastal tidal flat saline soil.展开更多
基金Supported by the National Basic Research Program of China (973 Program) (Nos 40176021,40676037 and 40706027)
文摘Using satellite images taken on different dates,GIS analysis of aerial photos,bathymetric maps and other field survey data,tidal troughs and major sand ridges in the northern Jiangsu coastal area were contrasted.The results show that there have been three types of movement or migration of tidal trough in this area:(1) Periodic and restricted,this type of trough usually developed along the beaches with immobile gully head as a result of the artificial dams and the swing range increased from gully head to the low reaches,so they have been obviously impacted by human activity and have longer swing periods;(2) Periodic and actively,this kind of trough,which swung with a fast rate and moved periodically on sand ridges,were mainly controlled by the swings of the host tidal troughs and hydrodynamic forces upon tidal sand ridge and influenced slightly by human constructions;(3) Steadily and slowly,they are the main tidal troughs with large scale and a steady orientation in this area and have slow lateral movement.The differences in migration mode of tidal trough shift result in different rates of migration and impact upon tidal sand ridges.Lateral accumulation on current tidal trough and deposition on abandoned tidal troughs are the two types of sedimentation of the tidal sand ridges formation.The whole radial sand ridge was generally prone to division and retreat although sand ridges fluctuated by the analysis of changes in talwegs of tidal troughs and shorelines of sand ridges.
基金the Special Fund for Agro-Scientific Research in the Public Interest of China (200903001)the National Natural Science Foundation of China (41171181, 41101199)+2 种基金the Natural Science Foundation of Jiangsu Province, China (BK2009337, BK2011423, BK2011425, BK2011883)the Project of Enterprise Academician Workstation of Jiangsu Province, China (BM2009622)the Prospective Project of Production Education Research Cooperation of Jiangsu Province, China (BY2011195)
文摘Careful soil management is important for the soil quality and productivity improvement of the reclaimed coastal tidal flat saline land in northern Jiangsu Province, China. Farmyard manure( FYM) and mulch applications, which affect soil characteristics and plant significantly, are regard as an effective pattern of saline land improvement. As a conventional management in the study region, FYM and mulch are used for the amendment of the new reclaimed tidal flat regularly, but little is known about their effects on soil physical properties functioning. A study was conducted on a typical coastal tidal flat saline land, which was reclaimed in 2005, to evaluate the effects of FYM, polyethylene film mulch(PM), straw mulch(SM), FYM combined with PM(FYM+PM), FYM combined with SM(FYM+SM), on soil hydraulic properties and soil mechanical impedance. CK represented conventional cultivation in study area without FYM and mulch application and served as a control. The experiment, laid out in a randomized complete block design with three replications, was studied in Huanghaiyuan Farm, which specialized in the agricultural utilization for coastal tidal flat. Result showed that capillary water holding capacity(CHC), saturated water content(SWC), saturated hydraulic conductivity( Ks) and bulk density(BD), cone index(CI) were affected significantly by the FYM and mulch application, especially in the 0-10 cm soil layer. FYM and mulch management increased CHC, SWC and Ks over all soil depth in the order of FYM+SM〉FYM+PM〉FYM〉SM〉PM〉CK. With the contrary sequence, BD and CI decreased significantly; however, FYM and mulch application affected BD and CI only in the upper soil layers. CHC, SWC and Ks decreased significantly with the increasing of soil depth, BD and CI, and a significant liner equation was found between CHC, SWC, Ks and BD, CI. With the highest CHC(38.15%), SWC(39.55%), Ks(6.00 mm h-1) and the lowest BD(1.26 g cm-3) and CI(2.71 MPa), the combined management of FYM and SM was recommend to be an effective method for the melioration of reclaimed coastal tidal flat saline soil.