1 Introduction East Kunlun orogen(EKO)stretching more than 1000km in E-W extension is located in the western segment of Central Orogen Belt(COB),China(Xu et al.,2006,Li et al.,2014).There outcropped Cambrian ophiolites
TIDBITS ABOUT VISIT TONORTHERN TIBETNyainqentanglha Mountain,whichis majestic enough to make othermountains feel shy. Nam Co Lake,which is as pretty as a young girl.Changtang Grasslands,which arevast in xize and house...TIDBITS ABOUT VISIT TONORTHERN TIBETNyainqentanglha Mountain,whichis majestic enough to make othermountains feel shy. Nam Co Lake,which is as pretty as a young girl.Changtang Grasslands,which arevast in xize and house muchwildlife. Lava caves, which are mys-terious. Rock caves where manyBuddhist masters have practicedmediation over the years.No-man’sland where human footprints arerarely seen......展开更多
Fault deformation characteristics in the northern margin of the Tibetan Plateau before the Menyuan Ms6.4 earthquake are investigated through time-series and structural geological analysis based on cross-fault observat...Fault deformation characteristics in the northern margin of the Tibetan Plateau before the Menyuan Ms6.4 earthquake are investigated through time-series and structural geological analysis based on cross-fault observation data from the Qilian Mountain-Haiyuan Fault belt and the West Qinling Fault belt. The results indicate: 1) Group short-term abnormal variations appeared in the Qilian Mountain-Haiyuan Fault belt and the West Qinling Fault belt before the Menyuan Ms6.4 earthquake. 2) More medium and short-term anomalies appear in the middle-eastern segment of the Qilian Mountain Fault belt and the West Qinling Fault belt, suggesting that the faults' activities are strong in these areas. The faults' activities in the middle-eastern segment of the Qilian Fault belt result from extensional stress, as before the earthquake, whereas those in the West Qinling Fault belt are mainly compressional. 3) In recent years, moderate-strong earthquakes occurred in both the Kunlun Mountain and the Qilian Mountain Fault belts, and some energy was released. It is possible that the seismicity moved eastward under this regime. Therefore, we should pay attention to the West Qinling Mountain area where an Ms6-7 earthquake could occur in future.展开更多
The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet ...The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.展开更多
The tectonic activities occurring since the Cenozoic in the northern part of theQinghai-Tibet Plateau (the region from the East Kunlun Mountains to the Tanggula Mountains)were probably caused by the intense intraplate...The tectonic activities occurring since the Cenozoic in the northern part of theQinghai-Tibet Plateau (the region from the East Kunlun Mountains to the Tanggula Mountains)were probably caused by the intense intraplate deformation propagation after the collision be-tween the Indian plate and the Eurasian plate. Their main expressions include the substantial up-lifting of the plateau, alternation of horizontal extension and compression under the verticalgreatest principal stress σ_1, occurrence of rift-type volcanic activity, formation of thebasin-range system, and successive eastward extrusion of blocks resulting from large-scalestrike-slip faulting. Geophysical exploration and experiments have revealed that there exist close-ly alternating horizontal high-velocity and low-velocity layers as well as lithospheric faults of aleft-lateral strike-slip sense in the lower part of the lithosphere (the lower crust and lithosphericmantle, 60-120 km deep). Based on an integrated study of the geological-geophysical data avail-able, the authors have proposed a model of deep-seated mantle diapir and the associatedtectonophysical process as the dynamic source for the uplift of the northern part of theQinghai-Tibet Plateau.展开更多
The oil shale with marine origin was first reported in 1987 from Shuanghui of the Qiangtang region. Its depositional sequence consists of brown\|black oil shale interbedded massive to thin limestone. Eleven oil shale ...The oil shale with marine origin was first reported in 1987 from Shuanghui of the Qiangtang region. Its depositional sequence consists of brown\|black oil shale interbedded massive to thin limestone. Eleven oil shale beds occur and aggregated thickness is up to 47 38m. It deposit age is confined in middle Jurassic by fossils identification. Nine samples selected from horizons with high\|organic contents have been examined by organic geochemistry approach. The oil\|shale range widely in organic carbon content (Toc), average in 8 34%, maximum values reaching 26.12%. Toc are markedly varied in vertical section. The Upper and lower members are slightly low and increase in the middle. The oil\|shale sediments are characterized by high concentration in chloroform bitumen“A”(608~18707)×10 -6 )and total hydrocarbon ((311~5272)×10 -6 ).The Rock\|Eval T \|max data (434~440℃) and vitrinite reflectance values (0.88%~1.26%) indicate that oil\|shale sequence are mature in all samples. The organic matter is predominantly made up of typeⅡ kerogen.展开更多
基金funded by the National Science Foundation of China (Grant Nos. 41502191, 41472191、41172186)
文摘1 Introduction East Kunlun orogen(EKO)stretching more than 1000km in E-W extension is located in the western segment of Central Orogen Belt(COB),China(Xu et al.,2006,Li et al.,2014).There outcropped Cambrian ophiolites
文摘TIDBITS ABOUT VISIT TONORTHERN TIBETNyainqentanglha Mountain,whichis majestic enough to make othermountains feel shy. Nam Co Lake,which is as pretty as a young girl.Changtang Grasslands,which arevast in xize and house muchwildlife. Lava caves, which are mys-terious. Rock caves where manyBuddhist masters have practicedmediation over the years.No-man’sland where human footprints arerarely seen......
基金funded by the Special Project of Basic Work of Science and Technology“Compilation and dataprocessing of modern vertical deformation Atlas of Chinese mainland”(2015FY210400)the Science and Technology Innovation Fund(FMC2015013)of the First Crust Monitoring and Application Center,China Earthquake Administration
文摘Fault deformation characteristics in the northern margin of the Tibetan Plateau before the Menyuan Ms6.4 earthquake are investigated through time-series and structural geological analysis based on cross-fault observation data from the Qilian Mountain-Haiyuan Fault belt and the West Qinling Fault belt. The results indicate: 1) Group short-term abnormal variations appeared in the Qilian Mountain-Haiyuan Fault belt and the West Qinling Fault belt before the Menyuan Ms6.4 earthquake. 2) More medium and short-term anomalies appear in the middle-eastern segment of the Qilian Mountain Fault belt and the West Qinling Fault belt, suggesting that the faults' activities are strong in these areas. The faults' activities in the middle-eastern segment of the Qilian Fault belt result from extensional stress, as before the earthquake, whereas those in the West Qinling Fault belt are mainly compressional. 3) In recent years, moderate-strong earthquakes occurred in both the Kunlun Mountain and the Qilian Mountain Fault belts, and some energy was released. It is possible that the seismicity moved eastward under this regime. Therefore, we should pay attention to the West Qinling Mountain area where an Ms6-7 earthquake could occur in future.
基金supported by the National Natural Science Foundation of China(Grant No.41501079 and 91647103)Funded by State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-43)+1 种基金the Chinese Academy of Sciences(CAS)Key Research Program(Grant No.KZZD-EW-13)the Foundation for Excellent Youth Scholars of NIEER,CAS
文摘The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.
基金This paper represents the result of the first-stage geological-geophysical integrated study of the Sino-French Cooperative Project"The Mechanism for Shortening of the Litbosphere in the East Kunlun and adjacent Regions"supported by the Ministry of Geol
文摘The tectonic activities occurring since the Cenozoic in the northern part of theQinghai-Tibet Plateau (the region from the East Kunlun Mountains to the Tanggula Mountains)were probably caused by the intense intraplate deformation propagation after the collision be-tween the Indian plate and the Eurasian plate. Their main expressions include the substantial up-lifting of the plateau, alternation of horizontal extension and compression under the verticalgreatest principal stress σ_1, occurrence of rift-type volcanic activity, formation of thebasin-range system, and successive eastward extrusion of blocks resulting from large-scalestrike-slip faulting. Geophysical exploration and experiments have revealed that there exist close-ly alternating horizontal high-velocity and low-velocity layers as well as lithospheric faults of aleft-lateral strike-slip sense in the lower part of the lithosphere (the lower crust and lithosphericmantle, 60-120 km deep). Based on an integrated study of the geological-geophysical data avail-able, the authors have proposed a model of deep-seated mantle diapir and the associatedtectonophysical process as the dynamic source for the uplift of the northern part of theQinghai-Tibet Plateau.
文摘The oil shale with marine origin was first reported in 1987 from Shuanghui of the Qiangtang region. Its depositional sequence consists of brown\|black oil shale interbedded massive to thin limestone. Eleven oil shale beds occur and aggregated thickness is up to 47 38m. It deposit age is confined in middle Jurassic by fossils identification. Nine samples selected from horizons with high\|organic contents have been examined by organic geochemistry approach. The oil\|shale range widely in organic carbon content (Toc), average in 8 34%, maximum values reaching 26.12%. Toc are markedly varied in vertical section. The Upper and lower members are slightly low and increase in the middle. The oil\|shale sediments are characterized by high concentration in chloroform bitumen“A”(608~18707)×10 -6 )and total hydrocarbon ((311~5272)×10 -6 ).The Rock\|Eval T \|max data (434~440℃) and vitrinite reflectance values (0.88%~1.26%) indicate that oil\|shale sequence are mature in all samples. The organic matter is predominantly made up of typeⅡ kerogen.