Extensive experimental studies are performed using force sensors to measure actuating forces of nozzle ring devices of variable nozzle turbines. Torques from pneumatic action applied onto axles of nozzle vanes have be...Extensive experimental studies are performed using force sensors to measure actuating forces of nozzle ring devices of variable nozzle turbines. Torques from pneumatic action applied onto axles of nozzle vanes have been calculated. Test results obtained through repeated experiments are quite congruent, confirming the effectiveness of this simple method. Results have indicated that, with a fixed opening angle of guide vane, pneumatic torque increases with mass flow of air jet in the turbine; moreover, under the same mass flow rate, torque decreases with reducing opening angle, even possibly change direction down to negative. The results have also provided a modus operandi for designing nozzle-adjusting devices as well as validation data for numerical study on changes of pneumatic torque onto guide vanes under full engine operating conditions.展开更多
Thermal fatigue (TF) is one of the most important factors that influence turbine's life.This paper establishes a 3D solid-fluid coupling model for a steady temperature analysis of a high-pressure turbine nozzle at...Thermal fatigue (TF) is one of the most important factors that influence turbine's life.This paper establishes a 3D solid-fluid coupling model for a steady temperature analysis of a high-pressure turbine nozzle at different turbine inlet gas total temperatures (TIGTTs).The temperature analysis supplies the temperature load for subsequent 3D finite element analysis to obtain the strain values.Following this,the prediction of the TF life is made on the basis of equivalent strain range.The results show that the strain increases with TIGTT,and the predicted TF life decreases correspondingly.This life prediction was confirmed by one TF test.展开更多
The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs an...The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs and improved durability.These goals are sought by 25%reduction in vane count number and lower number of airfoils per segment.Design challenges such as higher airfoil loading,associate aerodynamic losses and higher thermal loads are discussed.In order to maximize coolant flow reduction and avoid higher aerodynamic losses,airfoil Mach distribution is carefully controlled.There has been an effort to limit design changes so that the proven design features of the original vane are used as much as possible.Accordingly,the same cooling concept is used with minor modifications of the internal structures in order to achieve desired coolant flow and internal heat transfer distribution.Platforms of the new design are quite similar to the original one except for cooling holes and application of thermal barrier coating(TBC).Detailed aerodynamics/heat transfer simulations reveals that the reduced trailing edge(T.E.)blockage and skin friction dominated the negative effect of increased secondary losses.As a result the reduced design performs acceptable in terms of total pressure loss and improving stage efficiency for a wide range of varying pressure ratio.Moreover,more than 20%cooling mass flow can be saved;while maximum and average metal temperatures as well as cross sectional temperature gradients have not been changed much.展开更多
基金Sponsored by the National Natural Science Foundation of China (50676011)
文摘Extensive experimental studies are performed using force sensors to measure actuating forces of nozzle ring devices of variable nozzle turbines. Torques from pneumatic action applied onto axles of nozzle vanes have been calculated. Test results obtained through repeated experiments are quite congruent, confirming the effectiveness of this simple method. Results have indicated that, with a fixed opening angle of guide vane, pneumatic torque increases with mass flow of air jet in the turbine; moreover, under the same mass flow rate, torque decreases with reducing opening angle, even possibly change direction down to negative. The results have also provided a modus operandi for designing nozzle-adjusting devices as well as validation data for numerical study on changes of pneumatic torque onto guide vanes under full engine operating conditions.
基金Project (No.50806040) supported by the National Natural Science Foundation of China
文摘Thermal fatigue (TF) is one of the most important factors that influence turbine's life.This paper establishes a 3D solid-fluid coupling model for a steady temperature analysis of a high-pressure turbine nozzle at different turbine inlet gas total temperatures (TIGTTs).The temperature analysis supplies the temperature load for subsequent 3D finite element analysis to obtain the strain values.Following this,the prediction of the TF life is made on the basis of equivalent strain range.The results show that the strain increases with TIGTT,and the predicted TF life decreases correspondingly.This life prediction was confirmed by one TF test.
文摘The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs and improved durability.These goals are sought by 25%reduction in vane count number and lower number of airfoils per segment.Design challenges such as higher airfoil loading,associate aerodynamic losses and higher thermal loads are discussed.In order to maximize coolant flow reduction and avoid higher aerodynamic losses,airfoil Mach distribution is carefully controlled.There has been an effort to limit design changes so that the proven design features of the original vane are used as much as possible.Accordingly,the same cooling concept is used with minor modifications of the internal structures in order to achieve desired coolant flow and internal heat transfer distribution.Platforms of the new design are quite similar to the original one except for cooling holes and application of thermal barrier coating(TBC).Detailed aerodynamics/heat transfer simulations reveals that the reduced trailing edge(T.E.)blockage and skin friction dominated the negative effect of increased secondary losses.As a result the reduced design performs acceptable in terms of total pressure loss and improving stage efficiency for a wide range of varying pressure ratio.Moreover,more than 20%cooling mass flow can be saved;while maximum and average metal temperatures as well as cross sectional temperature gradients have not been changed much.