The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, p...Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.展开更多
To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adju...To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology. The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition, DNA binding activities of nuclear factor kappa B (NF-KB) were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-y, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-~:B was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-~:B and the expression of proinflammatory cytokines. Moreover, hepatic injuries were improved significantly after SB203580 administration.展开更多
Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, a...Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, and the effect of NF-κB activation on the protection of Parkinson’s disease by Isoflavone (I). Methods: PC12 cells were used to establish the cell model of Parkinson’s disease, and are divided into five groups: control group;MPP+ group;I (Isoflavone) + MPP+ group;I group;SN-50 + MPP+ group. The content of NF-κB in PC12 cells was determined by immunocytochemistry;The viability of PC12 cells after treated with cell-permeable NF-κB inhibitor SN-50 and cell viability were measured by MTT assay;the expression levels of NF-κB p65 in cytoplasm and nuclear fractions were evaluated by western blot analysis;the mRNA expression of NF-κB p65 was analyzed by in situ hybridization (ISH). Results: Compared with the control group, the protein of NF-κB p65 both in cytoplasm and in nuclei was significantly higher than in I + MPP+ and MPP+ groups;similarly, the mRNA expression level of NF-κB p65 gene was also significantly higher;moreover, the protein expression of NF-κB p65 was much lower in I group (P + group, the protein of NF-κB p65 was significantly lower in I + MPP+ group, the mRNA expression level of NF-κB p65 gene was also significantly lower, and the protein expression level of NF-κB p65 was much lower in I + MPP+ group (P + group (P > 0.05). Conclusion: NF-κB activation is essential to MPP+-induced apoptosis in PC12 cells;but Isoflavone can inhibit the cell damage to some extent to execute its protective function, which may be involved in nigral neurodegeneration in patients with Parkinson’s disease.展开更多
Nuclear factor kappa B(NF-κB) is one of the best-characterized transcription factors playing important roles in many cellular responses to a large variety of stimuli,including inflammatory cytokines, phorbol esters, ...Nuclear factor kappa B(NF-κB) is one of the best-characterized transcription factors playing important roles in many cellular responses to a large variety of stimuli,including inflammatory cytokines, phorbol esters, growth factors, and bacterial and viral products. The aim of this study is to demonstrate NF-κB expression in the mouse cochlea and its enhancement in response to lipopolysaccharides(LPS) and kanamycin(KA) treatment. Methods KA treatment consisted of subcutaneous KA injections at 700 mg/kg twice a day with an eight-hour interval between the two injections for 3 or 7 days. For animals in the LPS treatment group, a single dose of 0.3 mg LPS dissolved in 0.2 ml sterile saline were injected into both bullae through the tympanic membrane and kept there for 3 hours. Animals in the control group received subcutaneous saline injection for 7 days. Following immmunohistochemichal processing with rabbit polyclonal anti-NF-κB p65 antibodies, cryosections of the cochlea were examined for expression of NF-κB p65 in various structures in the cochlea. Results NF-κB p65 expression, identified by presence of brown reaction products characteristic of DAB immunohistochemistry, was visible in the spiral ligament, spiral prominence, tectorial membrane(TM), spiral ganglion and nerve fibers. Relatively weak NF-κB p65 expression was also visualized in the organ of Corti. Within the organ of Corti, the inner hair cells(IHC), outer hair cells(OHC), inner pillar cells(IP), outer pillar cells (OP), Deiter’s cells(DC), and Boettcher’s cells exhibited stronger staining than the inner sulcus cells, Hensen’s cells(HC) and Claudius’cells. No NF-κB p65 expression was seen in the nucleus of the IHC and OHC. NF-κB p65 expression was increased in animals exposed to LPS or KA, demonstrating significant differences in the staining between control animals and LPS/KA-treated animals. NF-κB p65 expression was not significantly different between LPS treated and KA treated animals or between 3 and 7 days in KA-treated animals. Conclusion LPS and KA exposure increases expression of NF-κB p65 in the mouse cochlea.展开更多
AIM: To investigate the anti-tumor effects of nuclear factor-κB (NF-κB) inhibitor SN50 and related mechanisms of SGC7901 human gastric carcinoma cells. METHODS: MTT assay was used to determine the cytotoxic effects ...AIM: To investigate the anti-tumor effects of nuclear factor-κB (NF-κB) inhibitor SN50 and related mechanisms of SGC7901 human gastric carcinoma cells. METHODS: MTT assay was used to determine the cytotoxic effects of SN50 in gastric cancer cell line SGC7901. Hoechst 33258 staining was used to detect apoptosis morphological changes after SN50 treatment. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after SN50 treatment.Immunofluorescence staining was used to detect the expression of light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. Western blotting analysis were used to determine the expression of proteins involved in apoptosis and autophagy including p53, p53 upregulated modulator of apoptosis (PUMA), damage-regulated autophagy modulator (DRAM), LC3 and Beclin 1. We detected the effects of p53-mediated autophagy activation on the apoptosis of SGC7901 cells with the p53 inhibitor pifithrin-α. RESULTS: The viability of SGC7901 cells was inhibited after SN50 treatment. Inductions in the expression of apoptotic protein p53 and PUMA as well as autophagic protein DRAM, LC3 and Beclin 1 were detected with Western blotting analysis. SN50-treated cells exhibited punctuate microtubule-associated protein 1 LC3 in immunoreactivity and MDC-labeled vesicles increased after treatment of SN50 by MDC staining. Collapse of mitochondrial membrane potential Δψ were detected for 6 to 24 h after SN50 treatment. SN50-induced increases in PUMA, DRAM, LC3 and Beclin 1 and cell death were blocked by the p53 specific inhibitor pifithrin-α. CONCLUSION: The anti-tumor activity of NF-κB inhibitors is associated with p53-mediated activation of autophagy.展开更多
选取31头经检测猪圆环病毒2型(PCV2)、猪繁殖与呼吸综合征病毒(PRRSV)抗原和抗体均为阴性的5周龄断奶仔猪,随机分为对照组16头和试验组15头,对照组仔猪每头滴鼻4 mL PBS,试验组仔猪每头滴鼻4 mL 5×105TCID50.mL-1PCV2悬液。于PCV2...选取31头经检测猪圆环病毒2型(PCV2)、猪繁殖与呼吸综合征病毒(PRRSV)抗原和抗体均为阴性的5周龄断奶仔猪,随机分为对照组16头和试验组15头,对照组仔猪每头滴鼻4 mL PBS,试验组仔猪每头滴鼻4 mL 5×105TCID50.mL-1PCV2悬液。于PCV2接种当天剖杀4头仔猪作为对照组,分别于14、21和35 d剖杀4头对照组和5头试验组仔猪,采集肝脏。用激光共聚焦显微镜检测核因子κB/P65(NF-κB/P65)蛋白的核易位变化;蛋白提取法分别提取肝脏细胞核蛋白和胞浆蛋白,Western blot定量检测细胞核中NF-κB/P65和细胞浆中p-IκBα、MyD88蛋白含量的变化;电泳迁移率(EMSA)法检测细胞核中NF-κB DNA的结合率变化。检测结果显示,PCV2接种仔猪,肝脏中NF-κB/P65蛋白核易位逐渐增多,到21 d达到峰值;p-IκBα、MyD88、NF-κB/P65 DNA结合率在接种后均先升高后趋于恢复,并于21 d达到高峰。与对照组仔猪相比,肝脏中MyD88和NF-κB/P65蛋白含量以及NF-κB DNA结合率在14和21 d试验组均显著升高(P<0.05),35 d含量变化不显著;21 d时试验组p-IκBα蛋白含量显著升高。相关性分析显示,NF-κB/P65蛋白含量与MyD88含量、NF-κB DNA结合率之间存在显著正相关,相关系数分别是0.566和0.528。结果表明,PCV2可通过激活MyD88启动NF-κB信号途径;通过IκBα的磷酸化降解激活NF-κB,并促进其进行核易位,使NF-κB与DNA发生结合,调控相关炎性细胞因子的转录和表达。展开更多
AIM:To investigate whether curcumin could attenuate nuclear factor(NF)-κB p65 expression and macromolecular leakage in the gastric mucosa of Helicobacter pylori(H.pylori)-infected rats.METHODS:Twenty-five male Spragu...AIM:To investigate whether curcumin could attenuate nuclear factor(NF)-κB p65 expression and macromolecular leakage in the gastric mucosa of Helicobacter pylori(H.pylori)-infected rats.METHODS:Twenty-five male Sprague-Dawley rats were equally divided into five groups:control rats(Control),control rats supplemented with 600 mg/kg curcumin,H.pylori-infected rats(Hp),H.pylori-infected rats supplemented with 200 mg/kg curcumin(Hp + curIn H.pylori-infected groups,rats were inoculated with H.pylori suspension twice a day at an interval of 4 h for 3 d.Two weeks later,200 or 600 mg/kg curcumin was given once daily to curcuminsupplemented groups for 7 d.On the day of the experiment,macromolecular leakage in gastric mucosa was examined by intravital fluorescence microscopy.The stomach tissue was removed to examine NF-κB p65 expression in gastric epithelial cells by immunohistochemistry.RESULTS:The expression of NF-κB p65 in gastric epithelial cells and the macromolecular leakage from gastric mucosal microcirculation significantly increased in the Hp group compared with the Control group.The percentages of NF-κB p65 immunoreactive cells in Control and Hp groups were 10.72% ± 2.10% vs 16.02% ± 2.98%,P = 0.004,respectively.The percentages of macromolecular leakage in Control and Hp groups were 10.69% ± 1.43% vs 15.41% ± 2.83%,P = 0.001,respectively.Curcumin supplementation in Hp + cur-CONCLUSION:H.pylori-induced gastric inflammation in rats is associated with increased NF-κB activation and macromolecular leakage which can be reduced by curcumin supplementation.展开更多
Oxygen free radical damage is regarded as a direct or indirect common pathway associated with diabetic neuropathy and is the main cause of complications in peripheral neuropathies. We speculate that Jiaweibugan decoct...Oxygen free radical damage is regarded as a direct or indirect common pathway associated with diabetic neuropathy and is the main cause of complications in peripheral neuropathies. We speculate that Jiaweibugan decoction has a significant effect in treating diabetic peripheral neuropathy through an anti-oxidative stress pathway. In this study, a diabetic rat model was established by intraperitoneal injection of streptozotocin. Rats were treated with Jiaweibugan decoction via intragastric administration. The levels of malondialdehyde and glutathione, which are indirect indexes of oxidative stress, in serum were determined using a colorimetric method. The expression levels of nuclear factor kappa B p65 mRNA and p38 mitogen-activated protein kinase, which are oxidative stress associated factors, in the dorsal root ganglion of spinal $4-6 segments were evaluated by reverse-transcriptase polymerase chain reaction and immunohistochemistry. Results showed that, Jiaweibugan decoction significantly ameliorated motor nerve conduction velocity in diabetic rats, effectively decreased malondialdehyde levels in serum and the expression of nuclear factor kappa B p65 mRNA and p38 mitogen-activated protein kinase mRNA in the dorsa root ganglion, and increased glutathione levels in serum. Therefore, our experimental findings indicate that Jiaweibugan decoction plays an anti-oxidative stress role in the diabetic peripheral neuropathy process, which has a protective effect on peripheral nerve injury.展开更多
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
基金supported by the Leibniz Association,Germany,and the VELUX Foundation,Switzerland
文摘Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.
基金Supported by grants from National Natural Science Foundation of China, No. 30471614 (to DK Qiu) and No.30571730 (to X Ma)Shanghai Leading Academic Discipline Project, No.Y0205 (to X Ma)
文摘To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology. The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition, DNA binding activities of nuclear factor kappa B (NF-KB) were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-y, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-~:B was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-~:B and the expression of proinflammatory cytokines. Moreover, hepatic injuries were improved significantly after SB203580 administration.
文摘Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, and the effect of NF-κB activation on the protection of Parkinson’s disease by Isoflavone (I). Methods: PC12 cells were used to establish the cell model of Parkinson’s disease, and are divided into five groups: control group;MPP+ group;I (Isoflavone) + MPP+ group;I group;SN-50 + MPP+ group. The content of NF-κB in PC12 cells was determined by immunocytochemistry;The viability of PC12 cells after treated with cell-permeable NF-κB inhibitor SN-50 and cell viability were measured by MTT assay;the expression levels of NF-κB p65 in cytoplasm and nuclear fractions were evaluated by western blot analysis;the mRNA expression of NF-κB p65 was analyzed by in situ hybridization (ISH). Results: Compared with the control group, the protein of NF-κB p65 both in cytoplasm and in nuclei was significantly higher than in I + MPP+ and MPP+ groups;similarly, the mRNA expression level of NF-κB p65 gene was also significantly higher;moreover, the protein expression of NF-κB p65 was much lower in I group (P + group, the protein of NF-κB p65 was significantly lower in I + MPP+ group, the mRNA expression level of NF-κB p65 gene was also significantly lower, and the protein expression level of NF-κB p65 was much lower in I + MPP+ group (P + group (P > 0.05). Conclusion: NF-κB activation is essential to MPP+-induced apoptosis in PC12 cells;but Isoflavone can inhibit the cell damage to some extent to execute its protective function, which may be involved in nigral neurodegeneration in patients with Parkinson’s disease.
文摘Nuclear factor kappa B(NF-κB) is one of the best-characterized transcription factors playing important roles in many cellular responses to a large variety of stimuli,including inflammatory cytokines, phorbol esters, growth factors, and bacterial and viral products. The aim of this study is to demonstrate NF-κB expression in the mouse cochlea and its enhancement in response to lipopolysaccharides(LPS) and kanamycin(KA) treatment. Methods KA treatment consisted of subcutaneous KA injections at 700 mg/kg twice a day with an eight-hour interval between the two injections for 3 or 7 days. For animals in the LPS treatment group, a single dose of 0.3 mg LPS dissolved in 0.2 ml sterile saline were injected into both bullae through the tympanic membrane and kept there for 3 hours. Animals in the control group received subcutaneous saline injection for 7 days. Following immmunohistochemichal processing with rabbit polyclonal anti-NF-κB p65 antibodies, cryosections of the cochlea were examined for expression of NF-κB p65 in various structures in the cochlea. Results NF-κB p65 expression, identified by presence of brown reaction products characteristic of DAB immunohistochemistry, was visible in the spiral ligament, spiral prominence, tectorial membrane(TM), spiral ganglion and nerve fibers. Relatively weak NF-κB p65 expression was also visualized in the organ of Corti. Within the organ of Corti, the inner hair cells(IHC), outer hair cells(OHC), inner pillar cells(IP), outer pillar cells (OP), Deiter’s cells(DC), and Boettcher’s cells exhibited stronger staining than the inner sulcus cells, Hensen’s cells(HC) and Claudius’cells. No NF-κB p65 expression was seen in the nucleus of the IHC and OHC. NF-κB p65 expression was increased in animals exposed to LPS or KA, demonstrating significant differences in the staining between control animals and LPS/KA-treated animals. NF-κB p65 expression was not significantly different between LPS treated and KA treated animals or between 3 and 7 days in KA-treated animals. Conclusion LPS and KA exposure increases expression of NF-κB p65 in the mouse cochlea.
基金Supported by Health Foundation of Jiangsu Province (H20 0719)the Higher Education Foundation of Jiangsu Province (08KJB320014)+2 种基金the Natural Science Foundation of Jiangsu Province (BK2008168)Suzhou High-Level Talents Project (2008-11)the Science, Education and Health Foundation of Soochow City (SWKQ00814)
文摘AIM: To investigate the anti-tumor effects of nuclear factor-κB (NF-κB) inhibitor SN50 and related mechanisms of SGC7901 human gastric carcinoma cells. METHODS: MTT assay was used to determine the cytotoxic effects of SN50 in gastric cancer cell line SGC7901. Hoechst 33258 staining was used to detect apoptosis morphological changes after SN50 treatment. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after SN50 treatment.Immunofluorescence staining was used to detect the expression of light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. Western blotting analysis were used to determine the expression of proteins involved in apoptosis and autophagy including p53, p53 upregulated modulator of apoptosis (PUMA), damage-regulated autophagy modulator (DRAM), LC3 and Beclin 1. We detected the effects of p53-mediated autophagy activation on the apoptosis of SGC7901 cells with the p53 inhibitor pifithrin-α. RESULTS: The viability of SGC7901 cells was inhibited after SN50 treatment. Inductions in the expression of apoptotic protein p53 and PUMA as well as autophagic protein DRAM, LC3 and Beclin 1 were detected with Western blotting analysis. SN50-treated cells exhibited punctuate microtubule-associated protein 1 LC3 in immunoreactivity and MDC-labeled vesicles increased after treatment of SN50 by MDC staining. Collapse of mitochondrial membrane potential Δψ were detected for 6 to 24 h after SN50 treatment. SN50-induced increases in PUMA, DRAM, LC3 and Beclin 1 and cell death were blocked by the p53 specific inhibitor pifithrin-α. CONCLUSION: The anti-tumor activity of NF-κB inhibitors is associated with p53-mediated activation of autophagy.
基金Supported by Thailand Research fund (code RMU 4980032)Graduate Thesis Grant,Graduate School,Chulalongkorn University,Thailand
文摘AIM:To investigate whether curcumin could attenuate nuclear factor(NF)-κB p65 expression and macromolecular leakage in the gastric mucosa of Helicobacter pylori(H.pylori)-infected rats.METHODS:Twenty-five male Sprague-Dawley rats were equally divided into five groups:control rats(Control),control rats supplemented with 600 mg/kg curcumin,H.pylori-infected rats(Hp),H.pylori-infected rats supplemented with 200 mg/kg curcumin(Hp + curIn H.pylori-infected groups,rats were inoculated with H.pylori suspension twice a day at an interval of 4 h for 3 d.Two weeks later,200 or 600 mg/kg curcumin was given once daily to curcuminsupplemented groups for 7 d.On the day of the experiment,macromolecular leakage in gastric mucosa was examined by intravital fluorescence microscopy.The stomach tissue was removed to examine NF-κB p65 expression in gastric epithelial cells by immunohistochemistry.RESULTS:The expression of NF-κB p65 in gastric epithelial cells and the macromolecular leakage from gastric mucosal microcirculation significantly increased in the Hp group compared with the Control group.The percentages of NF-κB p65 immunoreactive cells in Control and Hp groups were 10.72% ± 2.10% vs 16.02% ± 2.98%,P = 0.004,respectively.The percentages of macromolecular leakage in Control and Hp groups were 10.69% ± 1.43% vs 15.41% ± 2.83%,P = 0.001,respectively.Curcumin supplementation in Hp + cur-CONCLUSION:H.pylori-induced gastric inflammation in rats is associated with increased NF-κB activation and macromolecular leakage which can be reduced by curcumin supplementation.
基金supported by the Scientific Research Foundation of Traditional Chinese Medicine of Hunan Provincial Health Bureau,No.06202
文摘Oxygen free radical damage is regarded as a direct or indirect common pathway associated with diabetic neuropathy and is the main cause of complications in peripheral neuropathies. We speculate that Jiaweibugan decoction has a significant effect in treating diabetic peripheral neuropathy through an anti-oxidative stress pathway. In this study, a diabetic rat model was established by intraperitoneal injection of streptozotocin. Rats were treated with Jiaweibugan decoction via intragastric administration. The levels of malondialdehyde and glutathione, which are indirect indexes of oxidative stress, in serum were determined using a colorimetric method. The expression levels of nuclear factor kappa B p65 mRNA and p38 mitogen-activated protein kinase, which are oxidative stress associated factors, in the dorsal root ganglion of spinal $4-6 segments were evaluated by reverse-transcriptase polymerase chain reaction and immunohistochemistry. Results showed that, Jiaweibugan decoction significantly ameliorated motor nerve conduction velocity in diabetic rats, effectively decreased malondialdehyde levels in serum and the expression of nuclear factor kappa B p65 mRNA and p38 mitogen-activated protein kinase mRNA in the dorsa root ganglion, and increased glutathione levels in serum. Therefore, our experimental findings indicate that Jiaweibugan decoction plays an anti-oxidative stress role in the diabetic peripheral neuropathy process, which has a protective effect on peripheral nerve injury.