By analyzing heat transfer on the wall of fiat steel ribbon wound vessel (FSRWV), a numerical model of temperature distribution on the entire wall (including inner core wall, flat steel ribbons, outside cylinder of...By analyzing heat transfer on the wall of fiat steel ribbon wound vessel (FSRWV), a numerical model of temperature distribution on the entire wall (including inner core wall, flat steel ribbons, outside cylinder of jacket and insulating layer) was established by the authors. With the model, the temperature distribution and the length change in the vessel walls and flat steel ribbons in low temperature are calculated and analyzed. The results show that the flat steel ribbon wound cryogenic high-pressure vessel is simpler in structure, safer and easier to manufacture than those of conventional ones.展开更多
Abstract: The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete...Abstract: The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.展开更多
Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life...Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life of RPV, and thus, the aging and life research on a RPV is a key factor in determining the life extension of NPPs. The purpose of this paper is to introduce an aging and life management system for an operating RPV which can be used as a reference of the lifetime extension. In order to realize the objective, an aging and life management system was developed. It is an comprehensive knowledge management system that integrates decentralized information and serves as a valuable data center. Based on the storage and management of RPV state information and operation data, this system provides real-time monitoring of important operating parameters, evaluation of irradiation embrittlement, and RPV aging assessment. Therefore, it is anticipated that the developed system can be used as an efficient tool for aging and life estimation of RPV.展开更多
文摘By analyzing heat transfer on the wall of fiat steel ribbon wound vessel (FSRWV), a numerical model of temperature distribution on the entire wall (including inner core wall, flat steel ribbons, outside cylinder of jacket and insulating layer) was established by the authors. With the model, the temperature distribution and the length change in the vessel walls and flat steel ribbons in low temperature are calculated and analyzed. The results show that the flat steel ribbon wound cryogenic high-pressure vessel is simpler in structure, safer and easier to manufacture than those of conventional ones.
基金National Natural Science Foundation of China under Grant Nos.51138001 and 51479027
文摘Abstract: The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.
文摘Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life of RPV, and thus, the aging and life research on a RPV is a key factor in determining the life extension of NPPs. The purpose of this paper is to introduce an aging and life management system for an operating RPV which can be used as a reference of the lifetime extension. In order to realize the objective, an aging and life management system was developed. It is an comprehensive knowledge management system that integrates decentralized information and serves as a valuable data center. Based on the storage and management of RPV state information and operation data, this system provides real-time monitoring of important operating parameters, evaluation of irradiation embrittlement, and RPV aging assessment. Therefore, it is anticipated that the developed system can be used as an efficient tool for aging and life estimation of RPV.