期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In-situ observation and modeling approach to evolution of pore-fracture structure in coal 被引量:1
1
作者 Hongwei Zhou Zelin Liu +3 位作者 Jiawei Zhao Bocen Chen Xiangnan Li Jiangcheng Zhong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期265-274,共10页
The characterisation of the pore-fracture structure(PFS)and its evolution in coal during mining are essential for preventing gas outbursts and improving gas extraction efficiency.In this study,the evolution of the PFS... The characterisation of the pore-fracture structure(PFS)and its evolution in coal during mining are essential for preventing gas outbursts and improving gas extraction efficiency.In this study,the evolution of the PFS in coal samples under the condition of mining stress was directly captured in situ by combination of the mechanical testing system with high-precision visualisation nuclear magnetic resonance equipment.A fractional derivative model was established to describe the relationship between stress and porosity based on experimental results of the PFS under different stress states.The results showed that with an increase in the deviatoric stress,the adsorption pore content increases rapidly initially and then increases slowly or remains unchanged;the seepage pore and fracture(SPF)content decreases initially and then increases.The SPF compressibility coefficient decreases with an increase in the deviatoric stress.The fractional derivative model can accurately describe the stress sensitivity of the SPFs at the pre-peak stage,thus providing a new approach for accurately characterising the seepage characteristics of coal reservoirs. 展开更多
关键词 Pore-fracture structure Fractional derivative Stress sensitivity COMPRESSIBILITY nuclear magnetic resonance imaging
下载PDF
Imbibition characteristics of sandstone cores with different permeabilities in nanofluids
2
作者 QIU Rundong GU Chunyuan +2 位作者 XUE Peiyu XU Dongxing GU Ming 《Petroleum Exploration and Development》 CSCD 2022年第2期374-381,共8页
The core imbibition and shifting nuclear magnetic resonance(NMR) imaging experiment has loss of surface oil phase and air adsorption, which will affect the accuracy of the experiment result. To solve this issue, a mod... The core imbibition and shifting nuclear magnetic resonance(NMR) imaging experiment has loss of surface oil phase and air adsorption, which will affect the accuracy of the experiment result. To solve this issue, a modified experiment method, in-situ imbibition NMR method has been worked out. This method was used to carry out sandstone core imbibition experiment in nanofluid, and the oil migration images in the entire process were recorded. In combination with physical properties of the sandstone cores and the variations of the driving force during the imbibition process, imbibition characteristics of the sandstone cores with different permeabilities in nanofluid were analyzed. The results show that: the nanofluid can greatly reduce the interfacial tension of oil phase and improve the efficiency of imbibition and oil discharge, the higher the concentration, the lower the interfacial tension and the higher the efficiency of imbibition and oil discharge would be, but when the concentration reaches a certain value, the increase in imbibition and oil discharge efficiency slows down;the rise of temperature can reduce the oil viscosity resistance and interfacial tension, and hence enhance the imbibition and oil discharge rate;when the sandstone core is higher in permeability, the bottom crude oil would migrate upward and discharge during the imbibition, the higher the permeability of the sandstone core, the more obvious this phenomenon would be, and the phenomenon is shown as top oil discharge characteristic;when the sandstone core is low in permeability, the crude oil in the outer layer of the sandstone core would discharge first during the imbibition, then crude oil in the inside of the core would disperse outside and discharge, which is shown as oil discharge characteristic around the core;but under long time effect of nanofluid, the core would become more and more water-wet and reduce in the oil-water interfacial tension, so would have top oil discharge characteristic in the later stage of imbibition. 展开更多
关键词 NANOFLUID sandstone cores nuclear magnetic resonance imaging imbibition characteristics oil discharge efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部