期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of a high magnetic field on single-phase interface evolution,additional interfacial energy and nucleation undercooling in Al-based alloy
1
作者 Lin Wang Zhipeng Long +3 位作者 Long Hou Song Yan Baode Sun Xi Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期43-53,共11页
The effects of a high magnetic field on the evolution of the single-phase interface and the liquid-solid interface energy in Al-Cu alloy were investigated experimentally.It is found that the application of the magneti... The effects of a high magnetic field on the evolution of the single-phase interface and the liquid-solid interface energy in Al-Cu alloy were investigated experimentally.It is found that the application of the magnetic field has a significant promotion effect on the migration of liquid droplets,accelerating the formation of the single-phase interface.This should be attributed to the thermoelectric(TE)magnetic convection in the droplets which has enhanced the diffusion and increased the migration speed of liquid droplets.Further,the effect of the high magnetic field on the solid-liquid interface energy is analyzed by an improved grain boundary groove(GBG)method.The average solid-liquid interface energy of theα-Al/Al-Cu and Al2Cu/Al-Cu systems increases and decreases with the increase of the magnetic field,respectively.The above experiment results are well explained based on the formation and interaction of the magnetic dipole at the solid-liquid interface.Moreover,experimental results reveal that the magnetic-field-induced interface energy increases and decreases the nucleation undercooling of the Al-30wt.%Cu alloy and Al-35wt.%Cu alloy,respectively.By studying the effect of the magnetic-field-induced interface energy on the nucleation undercooling,the understanding of the interface energy-induced nucleation undercooling deepens. 展开更多
关键词 High magnetic field Interface energy nucleation undercooling Grain boundary groove
原文传递
Nucleation undercooling, solidification structures and magnetic properties of Nd_9Fe_(85–x)Ti_4C_2B_x (x=10–15) magnetic alloys 被引量:1
2
作者 潘晶 肖晓燕 +3 位作者 刘新才 董友仁 杨梦琳 詹玉勇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第4期390-395,共6页
Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, ... Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, the liquidus temperatures TL of the alloys decreased from 1498.5 to 1472.5 K; the solidus temperatures TS of them increased from 1353.2 to 1358.3 K; and the nucleation undercooling of the alloy melts cooled at the rate of 40 K/min decreased from 122.8 to 95.9 K, resulting in the solidification structures consisting of Nd_2Fe_(14)B, Fe_3B, α-Fe, Nd1.1Fe4B4 and TiC nanocrystallines. Furthermore, the Nd_9Fe_(85–x)Ti_4C_2B_x(x=11, 13, 15) bulk alloys in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and their solidification characteristics and solidification structures under sub-rapidly cooling rate were investigated. The results showed that partially amorphous structures were obtained in the as-cast bulk alloys and the amount of amorphous decreased with the increase of the B content. By annealing the as-cast bulk alloys at 923 K for 10 min, the nanocomposite microstructures composed with Nd_2Fe_(14)B, Fe_3B and α-Fe nanocrystallines, which showed a single-phase hard magnetic behavior and enhanced magnetic properties, were achieved. 展开更多
关键词 magnetic alloys thermophysical properties nucleation undercooling solidification microstructures magnetic properties rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部