The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scinti...The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scintillation counting techniique. The results showed that the  ̄(3)H-DHAQ-PBCA-NS had remarkable liver targeting effect. The content of  ̄(3)H-DHAQ-PBCA-NSin liver and heterotopic liver tumor was found to be 71.31±10. 49% of total amount of drug in animal body. It was also found that the content of  ̄(3)H-DHAQ-PBCA-NS in liver was higher than that in liver tissue, and the content of  ̄(3)H-DHAQ-PBCA-NS in annpit tumor was higher than that in armpit muscle tissue,but had no significant difference;It provides an ideal preparation for the DHAQ admini-stration.展开更多
Metastatic human HCC model is needed for the studies on mechanism and intervention of metastatic recurrence. By using orthotopic implantation of histologically intact tissues of 30 surgical specimens, a patient-like m...Metastatic human HCC model is needed for the studies on mechanism and intervention of metastatic recurrence. By using orthotopic implantation of histologically intact tissues of 30 surgical specimens, a patient-like metastatic model of human HCC in nude mice (LCI-D20) and a low metastatic model of human HCC in nude mice (LCI-D35) have been established. All mice with transplanted LCI-D20 tumors exhibited extremely high metastatic ability including spontaneous metastasis to liver, lungs, lymph nodes and peritoneal seeding. Remarkable difference was also found in expression of some of the invasiveness related genes and growth factors between the LCI-D20 and LCI-D35 tumors. PAI-1 increased gradually following tumor progression in LCI-D20 model, and correlated with tumor size and AFP level. Phasic expression of tissue intercellular adhesion molecule-1 in this model was also observed. Using corneal micropocket model, it was demonstrated that the vascular response induced by LCI-D20 tumor was stronger than that induced by LCI-D35 tumor. Similar report on metastatic human HCC model in nude mice and human HCC cell line with metastatic potential was rarely found in the literature. This LCI-D20 model has been widely used for the studies on intervention of metastasis, including anti-angiogenesis,antisense approach, metalloproteinase inhibitor, differentiation inducer, etc. It is concluded that the establishment of metastatic human HCC model in nude mice and human HCC cell line with metastatic potential will provide important models for the in vitro and in vitro study of HCC invasiveness, angiogenesis as well as intervention of HCC recurrence.展开更多
AIM: To establish a more stable and accurate nude mouse model of pancreatic cancer using cancer cell microencapsulation. METHODS: The assay is based on microencapsulation technology, wherein human tumor cells are enca...AIM: To establish a more stable and accurate nude mouse model of pancreatic cancer using cancer cell microencapsulation. METHODS: The assay is based on microencapsulation technology, wherein human tumor cells are encapsulated in small microcapsules (approximately 420 μm in diameter) constructed of semipermeable membranes. We implemented two kinds of subcutaneous implantation models in nude mice using the injection of single tumor cells and encapsulated pancreatic tumor cells. The size of subcutaneously implanted tumors was observed ona weekly basis using two methods, and growth curves were generated from these data. The growth and metastasis of orthotopically injected single tumor cells and encapsulated pancreatic tumor cells were evaluated at four and eight weeks postimplantation by positron emission tomography-computed tomography scan and necropsy. The pancreatic tumor samples obtained from each method were then sent for pathological examination. We evaluated differences in the rates of tumor incidence and the presence of metastasis and variations in tumor volume and tumor weight in the cancer microcapsules vs single-cell suspensions. RESULTS: Sequential in vitro observations of the microcapsules showed that the cancer cells in microcapsules proliferated well and formed spheroids at days 4 to 6. Further in vitro culture resulted in bursting of the membrane of the microcapsules and cells deviated outward and continued to grow in flasks. The optimum injection time was found to be 5 d after tumor encapsulation. In the subcutaneous implantation model, there were no significant differences in terms of tumor volume between the encapsulated pancreatic tumor cells and cells alone and rate of tumor incidence. There was a significant difference in the rate of successful im- plantation between the cancer cell microencapsulation group and the single tumor-cell suspension group (100% vs 71.43%, respectively, P = 0.0489) in the orthotropic implantation model. The former method displayed an obvious advantage in tumor mass (4th wk: 0.0461 ± 0.0399 vs 0.0313 ± 0.021, t = -0.81, P = 0.4379; 8th wk: 0.1284 ± 0.0284 vs 0.0943 ± 0.0571, t = -2.28, respectively, P = 0.0457) compared with the latter in the orthotopic implantation model. CONCLUSION: Encapsulation of pancreatic tumor cells is a reliable method for establishing a pancreatic tumor animal model.展开更多
AIM To assess the viability of orthotopic and heterotopic patient-derived pancreatic cancer xenografts implanted into nude mice.METHODS This study presents a prospective experimental analytical follow-up of the develo...AIM To assess the viability of orthotopic and heterotopic patient-derived pancreatic cancer xenografts implanted into nude mice.METHODS This study presents a prospective experimental analytical follow-up of the development of tumours in mice upon implantation of human pancreatic adenocarcinoma samples. Specimens were obtained surgically from patients with a pathological diagnosis of pancreatic adenocarcinoma. Tumour samples from pancreatic cancer patients were transplanted into nude mice in three different locations(intraperitoneal, subcutaneous and pancreatic). Histological analysis(haematoxylin-eosin and Masson's trichrome staining) and immunohistochemical assessment of apoptosis(TUNEL), proliferation(Ki-67), angiogenesis(CD31) and fibrogenesis(α-SMA) were performed. When a tumour xenograft reached the target size, it was reimplanted in a new nude mouse. Three sequential tumour xenograft generations were generated(F1, F2 and F3).RESULTS The overall tumour engraftment rate was 61.1%. The subcutaneous model was most effective in terms of tissue growth(69.9%), followed by intraperitoneal(57.6%) and pancreatic(55%) models. Tumour development was faster in the subcutaneous model(17.7 ± 2.6 wk) compared with the pancreatic(23.1 ± 2.3 wk) and intraperitoneal(25.0 ± 2.7 wk) models(P = 0.064). There was a progressive increase in the tumour engraftment rate over successive generations for all three models(F1 28.1% vs F2 71.4% vs F3 80.9%, P < 0.001). There were no significant differences in tumour xenograft differentiation and cell proliferation between human samples and the three experimental models among the sequential generations of tumour xenografts. However, a progressive decrease in fibrosis, fibrogenesis, tumour vascularisation and apoptosis was observed in the three experimental models compared with the human samples. All three pancreatic patient-derived xenograft models presented similar histological and immunohistochemical characteristics.CONCLUSION In our experience, the faster development andgreatest number of viable xenografts could make the subcutaneous model the best option for experimentation in pancreatic cancer.展开更多
A common model used for preclinical research was in vitro human tumor cell culture. An alternative model was the direct implantation of a unique patient's tumor biopsy specimens into immunodeficient host mice. Publis...A common model used for preclinical research was in vitro human tumor cell culture. An alternative model was the direct implantation of a unique patient's tumor biopsy specimens into immunodeficient host mice. Published data from PubMed (http://www.ncbi.nlm.nih.gov) and Current Contents Connect databases (http://thomsonreuters.com/ products_services/science/science_roducts/a-z/current_contents_connect) were reviewed. Prostate cancer (PCa) heterotransplantation was evaluated using histopathology, morphology, cell differentiation, DNA content, tumor marker expression, metastases, tumor kinetics, tumor take rate and tumor vasculature in the first tumor heterotransplant. The heterotransplanted tumor retained the biological properties of the original tumor, such as morphology, degree of differentiation, pathology, secretory activity, expression of tumor markers and human vasculature. Human PCa heterotransplants have considerable experimental advantages over cell culture following xenotransplantation.展开更多
Background The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells. However, these tu...Background The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells. However, these tumor cells are hard to be visualized directly in histopathological preparations, or in experimental glioma models. Therefore, we developed an experimental human dual-color in vivo glioma model, which made tracking solitary invasive glioma cells possible, for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells. This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling. Methods Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice. Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive. Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene, and a rat C6 glioma cell line was stained directly with CM-Dil, to establish three glioma cell lines emitting red fluorescence (SU3-RFP, U87-RFP, and C6-CM-Dil). Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice. Tumor-bearing mice were sacrificed when their clinical symptoms appeared, and the whole brain was harvested and snap frozen for further analysis. Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells. Results Almost all the essential tissues of the established EGFP athymic Balb/c nude mice, except hair and erythrocytes, fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm, approximately 50% of the offsprings were nu/nu EGFP+. SU3-RFP, U87-RFP, and C6-CM-Dil almost 100% expressed red fluorescence under the fluorescence microscope. Under fluorescence microscopic view, RFP+ cells were observed growing wherever they arrived at, locating in the brain parenchyma, ventricles, and para-vascular region. The interactions between the transplanted tumor cells and host adjacent cells could be classified into three types: (1) interweaving; (2) mergence; and (3) fusion. Interweaving was observed in the early stage of tumor remodeling, in which both transplantable tumor cells and host cells were observed scattered in the tumor invading and spreading area without organic connections. Mergence was defined as mutual interactions between tumor cells and host stroma during tumorigenesis. Direct cell fusion between transplantable tumor cells and host cells could be observed occasionally. Conclusions This study showed that self-established EGFP athymic nude mice offered the possibility of visualizing tumorigenesis of human xenograft tumor, and the dual-color xenograft glioma model was of considerable utility in studying the process of tumor remodeling. Based on this platform, mutual interactions between glioma cells and host tissues could be observed directly to further elucidate the development of tumor microenvironment.展开更多
文摘The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scintillation counting techniique. The results showed that the  ̄(3)H-DHAQ-PBCA-NS had remarkable liver targeting effect. The content of  ̄(3)H-DHAQ-PBCA-NSin liver and heterotopic liver tumor was found to be 71.31±10. 49% of total amount of drug in animal body. It was also found that the content of  ̄(3)H-DHAQ-PBCA-NS in liver was higher than that in liver tissue, and the content of  ̄(3)H-DHAQ-PBCA-NS in annpit tumor was higher than that in armpit muscle tissue,but had no significant difference;It provides an ideal preparation for the DHAQ admini-stration.
基金Partly supporled by the State Key Basic Research Program Grant of China(G1998051211)Leading Speciality Grant of Shanghai Health Bureau.
文摘Metastatic human HCC model is needed for the studies on mechanism and intervention of metastatic recurrence. By using orthotopic implantation of histologically intact tissues of 30 surgical specimens, a patient-like metastatic model of human HCC in nude mice (LCI-D20) and a low metastatic model of human HCC in nude mice (LCI-D35) have been established. All mice with transplanted LCI-D20 tumors exhibited extremely high metastatic ability including spontaneous metastasis to liver, lungs, lymph nodes and peritoneal seeding. Remarkable difference was also found in expression of some of the invasiveness related genes and growth factors between the LCI-D20 and LCI-D35 tumors. PAI-1 increased gradually following tumor progression in LCI-D20 model, and correlated with tumor size and AFP level. Phasic expression of tissue intercellular adhesion molecule-1 in this model was also observed. Using corneal micropocket model, it was demonstrated that the vascular response induced by LCI-D20 tumor was stronger than that induced by LCI-D35 tumor. Similar report on metastatic human HCC model in nude mice and human HCC cell line with metastatic potential was rarely found in the literature. This LCI-D20 model has been widely used for the studies on intervention of metastasis, including anti-angiogenesis,antisense approach, metalloproteinase inhibitor, differentiation inducer, etc. It is concluded that the establishment of metastatic human HCC model in nude mice and human HCC cell line with metastatic potential will provide important models for the in vitro and in vitro study of HCC invasiveness, angiogenesis as well as intervention of HCC recurrence.
基金Supported by The Science and Technology Commission Foundation of Shanghai, No. 09140902300the Municipal Education Commission Foundation of Shanghai, No. 09YZ84
文摘AIM: To establish a more stable and accurate nude mouse model of pancreatic cancer using cancer cell microencapsulation. METHODS: The assay is based on microencapsulation technology, wherein human tumor cells are encapsulated in small microcapsules (approximately 420 μm in diameter) constructed of semipermeable membranes. We implemented two kinds of subcutaneous implantation models in nude mice using the injection of single tumor cells and encapsulated pancreatic tumor cells. The size of subcutaneously implanted tumors was observed ona weekly basis using two methods, and growth curves were generated from these data. The growth and metastasis of orthotopically injected single tumor cells and encapsulated pancreatic tumor cells were evaluated at four and eight weeks postimplantation by positron emission tomography-computed tomography scan and necropsy. The pancreatic tumor samples obtained from each method were then sent for pathological examination. We evaluated differences in the rates of tumor incidence and the presence of metastasis and variations in tumor volume and tumor weight in the cancer microcapsules vs single-cell suspensions. RESULTS: Sequential in vitro observations of the microcapsules showed that the cancer cells in microcapsules proliferated well and formed spheroids at days 4 to 6. Further in vitro culture resulted in bursting of the membrane of the microcapsules and cells deviated outward and continued to grow in flasks. The optimum injection time was found to be 5 d after tumor encapsulation. In the subcutaneous implantation model, there were no significant differences in terms of tumor volume between the encapsulated pancreatic tumor cells and cells alone and rate of tumor incidence. There was a significant difference in the rate of successful im- plantation between the cancer cell microencapsulation group and the single tumor-cell suspension group (100% vs 71.43%, respectively, P = 0.0489) in the orthotropic implantation model. The former method displayed an obvious advantage in tumor mass (4th wk: 0.0461 ± 0.0399 vs 0.0313 ± 0.021, t = -0.81, P = 0.4379; 8th wk: 0.1284 ± 0.0284 vs 0.0943 ± 0.0571, t = -2.28, respectively, P = 0.0457) compared with the latter in the orthotopic implantation model. CONCLUSION: Encapsulation of pancreatic tumor cells is a reliable method for establishing a pancreatic tumor animal model.
基金Supported by the Andalusian Public Foundation for the Management of Health Research in Seville(FISEVI)
文摘AIM To assess the viability of orthotopic and heterotopic patient-derived pancreatic cancer xenografts implanted into nude mice.METHODS This study presents a prospective experimental analytical follow-up of the development of tumours in mice upon implantation of human pancreatic adenocarcinoma samples. Specimens were obtained surgically from patients with a pathological diagnosis of pancreatic adenocarcinoma. Tumour samples from pancreatic cancer patients were transplanted into nude mice in three different locations(intraperitoneal, subcutaneous and pancreatic). Histological analysis(haematoxylin-eosin and Masson's trichrome staining) and immunohistochemical assessment of apoptosis(TUNEL), proliferation(Ki-67), angiogenesis(CD31) and fibrogenesis(α-SMA) were performed. When a tumour xenograft reached the target size, it was reimplanted in a new nude mouse. Three sequential tumour xenograft generations were generated(F1, F2 and F3).RESULTS The overall tumour engraftment rate was 61.1%. The subcutaneous model was most effective in terms of tissue growth(69.9%), followed by intraperitoneal(57.6%) and pancreatic(55%) models. Tumour development was faster in the subcutaneous model(17.7 ± 2.6 wk) compared with the pancreatic(23.1 ± 2.3 wk) and intraperitoneal(25.0 ± 2.7 wk) models(P = 0.064). There was a progressive increase in the tumour engraftment rate over successive generations for all three models(F1 28.1% vs F2 71.4% vs F3 80.9%, P < 0.001). There were no significant differences in tumour xenograft differentiation and cell proliferation between human samples and the three experimental models among the sequential generations of tumour xenografts. However, a progressive decrease in fibrosis, fibrogenesis, tumour vascularisation and apoptosis was observed in the three experimental models compared with the human samples. All three pancreatic patient-derived xenograft models presented similar histological and immunohistochemical characteristics.CONCLUSION In our experience, the faster development andgreatest number of viable xenografts could make the subcutaneous model the best option for experimentation in pancreatic cancer.
文摘A common model used for preclinical research was in vitro human tumor cell culture. An alternative model was the direct implantation of a unique patient's tumor biopsy specimens into immunodeficient host mice. Published data from PubMed (http://www.ncbi.nlm.nih.gov) and Current Contents Connect databases (http://thomsonreuters.com/ products_services/science/science_roducts/a-z/current_contents_connect) were reviewed. Prostate cancer (PCa) heterotransplantation was evaluated using histopathology, morphology, cell differentiation, DNA content, tumor marker expression, metastases, tumor kinetics, tumor take rate and tumor vasculature in the first tumor heterotransplant. The heterotransplanted tumor retained the biological properties of the original tumor, such as morphology, degree of differentiation, pathology, secretory activity, expression of tumor markers and human vasculature. Human PCa heterotransplants have considerable experimental advantages over cell culture following xenotransplantation.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 81071766, No. 81101909, and No. 81172400), the National Basic Research Program of China ("973" Program, No. 2010CB529403), and the Natural Science Foundation of Jiangsu, China (No. BK2010227).
文摘Background The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells. However, these tumor cells are hard to be visualized directly in histopathological preparations, or in experimental glioma models. Therefore, we developed an experimental human dual-color in vivo glioma model, which made tracking solitary invasive glioma cells possible, for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells. This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling. Methods Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice. Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive. Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene, and a rat C6 glioma cell line was stained directly with CM-Dil, to establish three glioma cell lines emitting red fluorescence (SU3-RFP, U87-RFP, and C6-CM-Dil). Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice. Tumor-bearing mice were sacrificed when their clinical symptoms appeared, and the whole brain was harvested and snap frozen for further analysis. Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells. Results Almost all the essential tissues of the established EGFP athymic Balb/c nude mice, except hair and erythrocytes, fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm, approximately 50% of the offsprings were nu/nu EGFP+. SU3-RFP, U87-RFP, and C6-CM-Dil almost 100% expressed red fluorescence under the fluorescence microscope. Under fluorescence microscopic view, RFP+ cells were observed growing wherever they arrived at, locating in the brain parenchyma, ventricles, and para-vascular region. The interactions between the transplanted tumor cells and host adjacent cells could be classified into three types: (1) interweaving; (2) mergence; and (3) fusion. Interweaving was observed in the early stage of tumor remodeling, in which both transplantable tumor cells and host cells were observed scattered in the tumor invading and spreading area without organic connections. Mergence was defined as mutual interactions between tumor cells and host stroma during tumorigenesis. Direct cell fusion between transplantable tumor cells and host cells could be observed occasionally. Conclusions This study showed that self-established EGFP athymic nude mice offered the possibility of visualizing tumorigenesis of human xenograft tumor, and the dual-color xenograft glioma model was of considerable utility in studying the process of tumor remodeling. Based on this platform, mutual interactions between glioma cells and host tissues could be observed directly to further elucidate the development of tumor microenvironment.