A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the...A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.展开更多
Fault-tolerant data transmission models based on the redundant residue number system are proposed in this paper; they can transmit data correctly between two ends unless the residue errors exceed the error-correction ...Fault-tolerant data transmission models based on the redundant residue number system are proposed in this paper; they can transmit data correctly between two ends unless the residue errors exceed the error-correction capability. The expressions for the probability of error are presented when the channel noise is additive Gaussian noise and each branch is M-ary orthogonal signaling modulation. The expressions of the probabilities of undetected and uncorrected error are also obtained when the redundant residue number system are single error-checking and single error-correcting model, respectively.展开更多
The paper reviews the most consequential defects and rectification of traditional mathematics and its foundations. While this work is only the tip of the iceberg, so to speak, it gives us a totally different picture o...The paper reviews the most consequential defects and rectification of traditional mathematics and its foundations. While this work is only the tip of the iceberg, so to speak, it gives us a totally different picture of mathematics from what we have known for a long time. This journey started with two teasers posted in SciMath in 1997: 1) The equation 1 = 0.99… does not make sense. 2) The concept ?does not exist. The first statement sparked a debate that raged over a decade. Both statements generated a series of publications that continues to grow to this day. Among the new findings are: 3) There does not exist nondenumerable set. 4) There does not exist non-measurable set. 5) Cantor’s diagonal method is flawed. 6) The real numbers are discrete and countable. 7) Formal logic does not apply to mathematics. The unfinished debate between logicism, intuitionism-constructivism and formalism is resolved. The resolution is the constructivist foundations of mathematics with a summary of all the rectification undertaken in 2015, 2016 and in this paper. The extensions of the constructivist real number system include the complex vector plane and transcendental functions. Two important results in the 2015 are noted: The solution and resolution of Hilbert’s 23 problems that includes the resolution of Fermat’s last theorem and proof Goldbach’s conjecture.展开更多
A new set of steps for dividing process, the Reversed Dividing Process, is introduced, in which the position based number representation digits for the value of l/X are reversely output one by one compared with digit ...A new set of steps for dividing process, the Reversed Dividing Process, is introduced, in which the position based number representation digits for the value of l/X are reversely output one by one compared with digit output order of the normal dividing process.展开更多
In this paper, we point out an interesting asymmetry in the rules of fundamental mathematics between positive and negative numbers. Further, we show an alternative numerical system identical to today’s system, but wh...In this paper, we point out an interesting asymmetry in the rules of fundamental mathematics between positive and negative numbers. Further, we show an alternative numerical system identical to today’s system, but where positive numbers dominate over negative numbers. This is like a mirror symmetry of the existing number system. The asymmetry in both systems leads to imaginary and complex numbers. We also suggest an alternative number system with perfectly symmetrical rules—that is, where there is no dominance of negative numbers over positive numbers or vice versa, and where imaginary and complex numbers are no longer needed. This number system seems to be superior to other numerical systems, as it brings simplicity and logic back to areas that complex rules have dominated for much of the history of mathematics. Finally, we also briefly discuss how the Riemann hypothesis may be linked to the asymmetry in the current number system. The foundation rules of a number system can, in general, not be proven incorrect or correct inside the number system itself. However, the ultimate goal of a number system is, in our view, to describe nature accurately. The optimal number system should therefore be developed with feedback from nature. If nature, at a very fundamental level, is ruled by symmetry, then a symmetric number system should make it easier to understand nature than an asymmetric number system would. We hypothesize that a symmetric number system may thus be better suited to describing nature. Further, such a number system should eliminate imaginary numbers in space-time and quantum mechanics, for example, two areas of physics that are clouded in mystery to this day.展开更多
The paper summarizes the contributions of the three philosophies of mathematics—logicism, intuitionism-constructivism (constructivism for short) and formalism and their rectification—which constitute the new foundat...The paper summarizes the contributions of the three philosophies of mathematics—logicism, intuitionism-constructivism (constructivism for short) and formalism and their rectification—which constitute the new foundations of mathematics. The critique of the traditional foundations of mathematics reveals a number of errors including inconsistency (contradiction or paradox) and undefined and vacuous concepts which fall under ambiguity. Critique of the real and complex number systems reveals similar defects all of which are responsible not only for the unsolved long standing problems of foundations but also of traditional mathematics such as the 379-year-old Fermat’s last theorem (FLT) and 274-year-old Goldbach’s conjecture. These two problems require rectification of these defects before they can be resolved. One of the major defects is the inconsistency of the field axioms of the real number system with the construction of a counterexample to the trichotomy axiom that proved it and the real number system false and at the same time not linearly ordered. Indeed, the rectification yields the new foundations of mathematics, constructivist real number system and complex vector plane the last mathematical space being the rectification of the complex real number system. FLT is resolved by a counterexample that proves it false and the Goldbach’s conjecture has been proved both in the constructivist real number system and the new real number system. The latter gives to two mathematical structures or tools—generalized integral and generalized physical fractal. The rectification of foundations yields the resolution of problem 1 and the solution of problem 6 of Hilbert’s 23 problems.展开更多
Background Copy number variants(CNV)hold significant functional and evolutionary importance.Numerous ongoing CNV studies aim to elucidate the etiology of human diseases and gain insights into the population structure ...Background Copy number variants(CNV)hold significant functional and evolutionary importance.Numerous ongoing CNV studies aim to elucidate the etiology of human diseases and gain insights into the population structure of livestock.High-density chips have enabled the detection of CNV with increased resolution,leading to the identification of even small CNV.This study aimed to identify CNV in local Italian chicken breeds and investigate their distribution across the genome.Results Copy number variants were mainly distributed across the first six chromosomes and primarily associated with loss type CNV.The majority of CNV in the investigated breeds were of types 0 and 1,and the minimum length of CNV was significantly larger than that reported in previous studies.Interestingly,a high proportion of the length of chromosome 16 was covered by copy number variation regions(CNVR),with the major histocompatibility complex being the likely cause.Among the genes identified within CNVR,only those present in at least five animals across breeds(n=95)were discussed to reduce the focus on redundant CNV.Some of these genes have been associated to functional traits in chickens.Notably,several CNVR on different chromosomes harbor genes related to muscle development,tissue-specific biological processes,heat stress resistance,and immune response.Quantitative trait loci(QTL)were also analyzed to investigate potential overlapping with the identified CNVR:54 out of the 95 gene-containing regions overlapped with 428 QTL associated to body weight and size,carcass characteristics,egg production,egg components,fat deposition,and feed intake.Conclusions The genomic phenomena reported in this study that can cause changes in the distribution of CNV within the genome over time and the comparison of these differences in CNVR of the local chicken breeds could help in preserving these genetic resources.展开更多
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components...Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.展开更多
Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-...Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.展开更多
Some haplotypes of the sucrose synthase gene TaSus1 are associated with thousand-grain weight(TGW)in wheat(Triticum aestivum L.).However,no mutations have been identified within the gene to test this association.The e...Some haplotypes of the sucrose synthase gene TaSus1 are associated with thousand-grain weight(TGW)in wheat(Triticum aestivum L.).However,no mutations have been identified within the gene to test this association.The effects of TaSus1 on grain number per spike(GNS)also are largely unknown.Our previous genome-wide association study identified TaSus-A1 as a candidate gene controlling fertile spikelet number per spike(FSN).In the present study,we generated two independent mutants for the three TaSus1 homoeologs by CRISPR/Cas9-mediated genome editing.The triple mutants displayed lower FSN,GNS,grain number per spikelet(GNST),and TGW than wild-type plants.In 306 hexaploid wheat accessions,two single-nucleotide polymorphisms in TaSus-A1 contributed differently to GNS.Introgression of the two alleles into a wheat genetic background confirmed their effects.The alleles differed in geographical distribution among the accessions.展开更多
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na...Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.展开更多
Aggregation of species with similar ecological properties is one of the effective methods to simplify food web researches.However,species aggregation will affect not only the complexity of modeling process but also th...Aggregation of species with similar ecological properties is one of the effective methods to simplify food web researches.However,species aggregation will affect not only the complexity of modeling process but also the accuracy of models’outputs.Selection of aggregation methods and the number of trophospecies are the keys to study the simplification of food web.In this study,three aggregation methods,including taxonomic aggregation(TA),structural equivalence aggregation(SEA),and self-organizing maps(SOM),were analyzed and compared with the linear inverse model–Markov Chain Monte Carlo(LIM-MCMC)model.Impacts of aggregation methods and trophospecies number on food webs were evaluated based on the robustness and unitless of ecological net-work indices.Results showed that aggregation method of SEA performed better than the other two methods in estimating food web structure and function indices.The effects of aggregation methods were driven by the differences in species aggregation principles,which will alter food web structure and function through the redistribution of energy flow.According to the results of mean absolute percentage error(MAPE)which can be applied to evaluate the accuracy of the model,we found that MAPE in food web indices will increase with the reducing trophospecies number,and MAPE in food web function indices were smaller and more stable than those in food web structure indices.Therefore,trade-off between simplifying food webs and reflecting the status of ecosystem should be con-sidered in food web studies.These findings highlight the importance of aggregation methods and trophospecies number in the analy-sis of food web simplification.This study provided a framework to explore the extent to which food web models are affected by dif-ferent species aggregation,and will provide scientific basis for the construction of food webs.展开更多
In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been tr...In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of Ω with other types of anti-hyperons such as Ξ. To investigate these two scenarios, we propose to measure the correlations between Ω and K and between Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport(AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the Ω-hadron correlations from simulated Au+Au collisions at ■ =7.7 and 14.6 Ge V and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.展开更多
The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper inves...The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.展开更多
The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactio...The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactions.Herein,to stabilize both zinc anodes and water molecules,we developed a modified electrolyte by adding a trace amount of N,N-diethylformanmide(DEF)into the ZnSO_(4)electrolyte for the first time in zinc ion batteries.The effectiveness of DEF is predicted by the comparison of donor number and its preferential adsorption behavior on the zinc anode is further demonstrated by several spectroscopy characterizations,electrochemical methods,and molecular dynamics simulation.The modified electrolyte with 5%v.t.DEF content can ensure a stable cycling life longer than 3400 h of Zn‖Zn symmetric cells and an ultra-reversible Zn stripping/plating process with a high coulombic efficiency of 99.7%.The Zn‖VO_(2)full cell maintains a capacity retention of 83.5%and a 104 mA h g^(-1)mass capacity after 1000cycles.This work provides insights into the role of interfacial adsorption behavior and the donor number of additive molecules in designing low-content and effective aqueous electrolytes.展开更多
Biological specimens are fundamental for taxonomy and flora/fauna research.More importantly,they also play crucial roles in recording environmental impacts on morphology and behavior,which is vital for biodiversity re...Biological specimens are fundamental for taxonomy and flora/fauna research.More importantly,they also play crucial roles in recording environmental impacts on morphology and behavior,which is vital for biodiversity research and conservation.However,there are few systematic studies on the patterns and drivers of bird specimen number at regional scales.This study is the first attempt to examine the relationships between bird specimen number and species traits as well as climate niche breadth in China,aiming to answer two questions:1)how do species’temperature niche breadth and precipitation niche breadth influence specimen number?2)which trait is most associated with bird specimen number?The associations between bird specimen number and explanatory variables were examined using ordinary least squares,generalized linear models,phylogenetic generalized linear mixed models,and multiple comparisons.The results showed that Muscicapidae was the family with the highest specimen number,and Passeriformes was the order with the highest specimen number.Bird specimen number significantly increased with larger temperature niche breadth and precipitation niche breadth.Specimen number was also positively associated with geographic range size,habitat specificity,hunting vulnerability and clutch size,but negatively associated with body size.These findings suggest that future bird specimen collection should pay more attention to birds with limited ecological niches,large body sizes,and small clutch sizes.This research enhances the use of bird specimen data to study and preserve biodiversity.展开更多
Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH ins...Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH insulator with high Chern number is conducive to spintronic devices with lower energy consumption. Here, we find that monolayer Fe SIn is a good candidate for realizing the QAH phase;it exhibits a high magnetic transition temperature of 221 K and tunable C = ±2 with respect to magnetization orientation in the y–z plane. After the application of biaxial strain, the magnetic axis shifts from the x–y plane to the z direction, and the effect of the high C and ferromagnetic ground state on the stress is robust. Also, the effect of correlation U on C has been examined. These properties are rooted in the large size of the Fe atom that contributes to ferromagnetic kinetic exchange with neighboring Fe atoms. These findings demonstrate monolayer Fe SIn to be a major template for probing novel QAH devices at higher temperatures.展开更多
Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such lar...Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate.展开更多
Deep neural networks perform well in image recognition,object recognition,pattern analysis,and speech recog-nition.In military applications,deep neural networks can detect equipment and recognize objects.In military e...Deep neural networks perform well in image recognition,object recognition,pattern analysis,and speech recog-nition.In military applications,deep neural networks can detect equipment and recognize objects.In military equipment,it is necessary to detect and recognize rifle management,which is an important piece of equipment,using deep neural networks.There have been no previous studies on the detection of real rifle numbers using real rifle image datasets.In this study,we propose a method for detecting and recognizing rifle numbers when rifle image data are insufficient.The proposed method was designed to improve the recognition rate of a specific dataset using data fusion and transfer learningmethods.In the proposed method,real rifle images and existing digit images are fusedas trainingdata,andthe final layer is transferredto theYolov5 algorithmmodel.The detectionand recognition performance of rifle numbers was improved and analyzed using rifle image and numerical datasets.We used actual rifle image data(K-2 rifle)and numeric image datasets,as an experimental environment.TensorFlow was used as the machine learning library.Experimental results show that the proposed method maintains 84.42% accuracy,73.54% precision,81.81% recall,and 77.46% F1-score in detecting and recognizing rifle numbers.The proposed method is effective in detecting rifle numbers.展开更多
基金Supported by the Natural Science Foundation of Tianjin (No. 11JCZDJC15800)the National Natural Science Foundation of China(No. 61003306)
文摘A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.
基金Supported by the National Natural Science Foundation of China
文摘Fault-tolerant data transmission models based on the redundant residue number system are proposed in this paper; they can transmit data correctly between two ends unless the residue errors exceed the error-correction capability. The expressions for the probability of error are presented when the channel noise is additive Gaussian noise and each branch is M-ary orthogonal signaling modulation. The expressions of the probabilities of undetected and uncorrected error are also obtained when the redundant residue number system are single error-checking and single error-correcting model, respectively.
文摘The paper reviews the most consequential defects and rectification of traditional mathematics and its foundations. While this work is only the tip of the iceberg, so to speak, it gives us a totally different picture of mathematics from what we have known for a long time. This journey started with two teasers posted in SciMath in 1997: 1) The equation 1 = 0.99… does not make sense. 2) The concept ?does not exist. The first statement sparked a debate that raged over a decade. Both statements generated a series of publications that continues to grow to this day. Among the new findings are: 3) There does not exist nondenumerable set. 4) There does not exist non-measurable set. 5) Cantor’s diagonal method is flawed. 6) The real numbers are discrete and countable. 7) Formal logic does not apply to mathematics. The unfinished debate between logicism, intuitionism-constructivism and formalism is resolved. The resolution is the constructivist foundations of mathematics with a summary of all the rectification undertaken in 2015, 2016 and in this paper. The extensions of the constructivist real number system include the complex vector plane and transcendental functions. Two important results in the 2015 are noted: The solution and resolution of Hilbert’s 23 problems that includes the resolution of Fermat’s last theorem and proof Goldbach’s conjecture.
文摘A new set of steps for dividing process, the Reversed Dividing Process, is introduced, in which the position based number representation digits for the value of l/X are reversely output one by one compared with digit output order of the normal dividing process.
文摘In this paper, we point out an interesting asymmetry in the rules of fundamental mathematics between positive and negative numbers. Further, we show an alternative numerical system identical to today’s system, but where positive numbers dominate over negative numbers. This is like a mirror symmetry of the existing number system. The asymmetry in both systems leads to imaginary and complex numbers. We also suggest an alternative number system with perfectly symmetrical rules—that is, where there is no dominance of negative numbers over positive numbers or vice versa, and where imaginary and complex numbers are no longer needed. This number system seems to be superior to other numerical systems, as it brings simplicity and logic back to areas that complex rules have dominated for much of the history of mathematics. Finally, we also briefly discuss how the Riemann hypothesis may be linked to the asymmetry in the current number system. The foundation rules of a number system can, in general, not be proven incorrect or correct inside the number system itself. However, the ultimate goal of a number system is, in our view, to describe nature accurately. The optimal number system should therefore be developed with feedback from nature. If nature, at a very fundamental level, is ruled by symmetry, then a symmetric number system should make it easier to understand nature than an asymmetric number system would. We hypothesize that a symmetric number system may thus be better suited to describing nature. Further, such a number system should eliminate imaginary numbers in space-time and quantum mechanics, for example, two areas of physics that are clouded in mystery to this day.
文摘The paper summarizes the contributions of the three philosophies of mathematics—logicism, intuitionism-constructivism (constructivism for short) and formalism and their rectification—which constitute the new foundations of mathematics. The critique of the traditional foundations of mathematics reveals a number of errors including inconsistency (contradiction or paradox) and undefined and vacuous concepts which fall under ambiguity. Critique of the real and complex number systems reveals similar defects all of which are responsible not only for the unsolved long standing problems of foundations but also of traditional mathematics such as the 379-year-old Fermat’s last theorem (FLT) and 274-year-old Goldbach’s conjecture. These two problems require rectification of these defects before they can be resolved. One of the major defects is the inconsistency of the field axioms of the real number system with the construction of a counterexample to the trichotomy axiom that proved it and the real number system false and at the same time not linearly ordered. Indeed, the rectification yields the new foundations of mathematics, constructivist real number system and complex vector plane the last mathematical space being the rectification of the complex real number system. FLT is resolved by a counterexample that proves it false and the Goldbach’s conjecture has been proved both in the constructivist real number system and the new real number system. The latter gives to two mathematical structures or tools—generalized integral and generalized physical fractal. The rectification of foundations yields the resolution of problem 1 and the solution of problem 6 of Hilbert’s 23 problems.
基金supported by the project“Protection of biodiversity of Italian poultry breeds—TuBAvI”,funded in the framework of the PSRN 2014–2020,submeasure 10.2“Support for sustainable conservation,use and development of genetic resources in agriculture”.
文摘Background Copy number variants(CNV)hold significant functional and evolutionary importance.Numerous ongoing CNV studies aim to elucidate the etiology of human diseases and gain insights into the population structure of livestock.High-density chips have enabled the detection of CNV with increased resolution,leading to the identification of even small CNV.This study aimed to identify CNV in local Italian chicken breeds and investigate their distribution across the genome.Results Copy number variants were mainly distributed across the first six chromosomes and primarily associated with loss type CNV.The majority of CNV in the investigated breeds were of types 0 and 1,and the minimum length of CNV was significantly larger than that reported in previous studies.Interestingly,a high proportion of the length of chromosome 16 was covered by copy number variation regions(CNVR),with the major histocompatibility complex being the likely cause.Among the genes identified within CNVR,only those present in at least five animals across breeds(n=95)were discussed to reduce the focus on redundant CNV.Some of these genes have been associated to functional traits in chickens.Notably,several CNVR on different chromosomes harbor genes related to muscle development,tissue-specific biological processes,heat stress resistance,and immune response.Quantitative trait loci(QTL)were also analyzed to investigate potential overlapping with the identified CNVR:54 out of the 95 gene-containing regions overlapped with 428 QTL associated to body weight and size,carcass characteristics,egg production,egg components,fat deposition,and feed intake.Conclusions The genomic phenomena reported in this study that can cause changes in the distribution of CNV within the genome over time and the comparison of these differences in CNVR of the local chicken breeds could help in preserving these genetic resources.
基金supported financially by the National Key Research and Development Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250)。
文摘Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.
基金This work was funded by the National Key Research and Development Program of China(2023YFF1000404)the Shenzhen Basic Research and Development Key Program of China(JCYJ20200109150713553)Hainan Key Research and Development in Modern Agriculture of China(ZDYF2021Y128).
文摘Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24010104-2).
文摘Some haplotypes of the sucrose synthase gene TaSus1 are associated with thousand-grain weight(TGW)in wheat(Triticum aestivum L.).However,no mutations have been identified within the gene to test this association.The effects of TaSus1 on grain number per spike(GNS)also are largely unknown.Our previous genome-wide association study identified TaSus-A1 as a candidate gene controlling fertile spikelet number per spike(FSN).In the present study,we generated two independent mutants for the three TaSus1 homoeologs by CRISPR/Cas9-mediated genome editing.The triple mutants displayed lower FSN,GNS,grain number per spikelet(GNST),and TGW than wild-type plants.In 306 hexaploid wheat accessions,two single-nucleotide polymorphisms in TaSus-A1 contributed differently to GNS.Introgression of the two alleles into a wheat genetic background confirmed their effects.The alleles differed in geographical distribution among the accessions.
文摘Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.
基金supported by the National Key R&D Program of China(Nos.2019YFD0901204,2019YFD 0901205).
文摘Aggregation of species with similar ecological properties is one of the effective methods to simplify food web researches.However,species aggregation will affect not only the complexity of modeling process but also the accuracy of models’outputs.Selection of aggregation methods and the number of trophospecies are the keys to study the simplification of food web.In this study,three aggregation methods,including taxonomic aggregation(TA),structural equivalence aggregation(SEA),and self-organizing maps(SOM),were analyzed and compared with the linear inverse model–Markov Chain Monte Carlo(LIM-MCMC)model.Impacts of aggregation methods and trophospecies number on food webs were evaluated based on the robustness and unitless of ecological net-work indices.Results showed that aggregation method of SEA performed better than the other two methods in estimating food web structure and function indices.The effects of aggregation methods were driven by the differences in species aggregation principles,which will alter food web structure and function through the redistribution of energy flow.According to the results of mean absolute percentage error(MAPE)which can be applied to evaluate the accuracy of the model,we found that MAPE in food web indices will increase with the reducing trophospecies number,and MAPE in food web function indices were smaller and more stable than those in food web structure indices.Therefore,trade-off between simplifying food webs and reflecting the status of ecosystem should be con-sidered in food web studies.These findings highlight the importance of aggregation methods and trophospecies number in the analy-sis of food web simplification.This study provided a framework to explore the extent to which food web models are affected by dif-ferent species aggregation,and will provide scientific basis for the construction of food webs.
文摘In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of Ω with other types of anti-hyperons such as Ξ. To investigate these two scenarios, we propose to measure the correlations between Ω and K and between Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport(AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the Ω-hadron correlations from simulated Au+Au collisions at ■ =7.7 and 14.6 Ge V and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.
基金funded by King Khalid University through a large group research project under Grant Number R.G.P.2/449/44.
文摘The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.
基金supported by the National Natural Science Foundation of China[51874110 and 51604089]the Natural Science Foundation of Heilongjiang Province[YQ2021B004]+1 种基金the Open Project of the State Key Laboratory of Urban Water Resource and Environment[QA202138]the Fundamental Research Funds for the Central Universities[HIT.DZJJ.2023055]。
文摘The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactions.Herein,to stabilize both zinc anodes and water molecules,we developed a modified electrolyte by adding a trace amount of N,N-diethylformanmide(DEF)into the ZnSO_(4)electrolyte for the first time in zinc ion batteries.The effectiveness of DEF is predicted by the comparison of donor number and its preferential adsorption behavior on the zinc anode is further demonstrated by several spectroscopy characterizations,electrochemical methods,and molecular dynamics simulation.The modified electrolyte with 5%v.t.DEF content can ensure a stable cycling life longer than 3400 h of Zn‖Zn symmetric cells and an ultra-reversible Zn stripping/plating process with a high coulombic efficiency of 99.7%.The Zn‖VO_(2)full cell maintains a capacity retention of 83.5%and a 104 mA h g^(-1)mass capacity after 1000cycles.This work provides insights into the role of interfacial adsorption behavior and the donor number of additive molecules in designing low-content and effective aqueous electrolytes.
基金supported by the Natural Science Foundation of Inner Mongolia,China(2023JQ01)the National Key R&D Program of China(2019YFA0607103)+2 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2022ZY0224)the Open Project Program of’Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau(KF2023003)’the Major Science and Technology Project of Inner Mongolia Autonomous Region:Monitoring,Assessment and Early Warning Technology Research of Biodiversity in Inner Mongolia(2021ZD0011)。
文摘Biological specimens are fundamental for taxonomy and flora/fauna research.More importantly,they also play crucial roles in recording environmental impacts on morphology and behavior,which is vital for biodiversity research and conservation.However,there are few systematic studies on the patterns and drivers of bird specimen number at regional scales.This study is the first attempt to examine the relationships between bird specimen number and species traits as well as climate niche breadth in China,aiming to answer two questions:1)how do species’temperature niche breadth and precipitation niche breadth influence specimen number?2)which trait is most associated with bird specimen number?The associations between bird specimen number and explanatory variables were examined using ordinary least squares,generalized linear models,phylogenetic generalized linear mixed models,and multiple comparisons.The results showed that Muscicapidae was the family with the highest specimen number,and Passeriformes was the order with the highest specimen number.Bird specimen number significantly increased with larger temperature niche breadth and precipitation niche breadth.Specimen number was also positively associated with geographic range size,habitat specificity,hunting vulnerability and clutch size,but negatively associated with body size.These findings suggest that future bird specimen collection should pay more attention to birds with limited ecological niches,large body sizes,and small clutch sizes.This research enhances the use of bird specimen data to study and preserve biodiversity.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52173283)the Taishan Scholar Program of Shandong Province,China (Grant No. ts20190939)the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043)。
文摘Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH insulator with high Chern number is conducive to spintronic devices with lower energy consumption. Here, we find that monolayer Fe SIn is a good candidate for realizing the QAH phase;it exhibits a high magnetic transition temperature of 221 K and tunable C = ±2 with respect to magnetization orientation in the y–z plane. After the application of biaxial strain, the magnetic axis shifts from the x–y plane to the z direction, and the effect of the high C and ferromagnetic ground state on the stress is robust. Also, the effect of correlation U on C has been examined. These properties are rooted in the large size of the Fe atom that contributes to ferromagnetic kinetic exchange with neighboring Fe atoms. These findings demonstrate monolayer Fe SIn to be a major template for probing novel QAH devices at higher temperatures.
基金funded by the National Natural Science Foundation of China and the Machinery Industry Innovation Platform Construction Project of China Machinery Industry Federation,Grant Numbers 52378103 and 2019SA-10-07.
文摘Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate.
基金supported by the Future Strategy and Technology Research Institute(RN:23-AI-04)of Korea Military Academythe Hwarang-Dae Research Institute(RN:2023B1015)of Korea Military Academy,and Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1I1A1A01040308).
文摘Deep neural networks perform well in image recognition,object recognition,pattern analysis,and speech recog-nition.In military applications,deep neural networks can detect equipment and recognize objects.In military equipment,it is necessary to detect and recognize rifle management,which is an important piece of equipment,using deep neural networks.There have been no previous studies on the detection of real rifle numbers using real rifle image datasets.In this study,we propose a method for detecting and recognizing rifle numbers when rifle image data are insufficient.The proposed method was designed to improve the recognition rate of a specific dataset using data fusion and transfer learningmethods.In the proposed method,real rifle images and existing digit images are fusedas trainingdata,andthe final layer is transferredto theYolov5 algorithmmodel.The detectionand recognition performance of rifle numbers was improved and analyzed using rifle image and numerical datasets.We used actual rifle image data(K-2 rifle)and numeric image datasets,as an experimental environment.TensorFlow was used as the machine learning library.Experimental results show that the proposed method maintains 84.42% accuracy,73.54% precision,81.81% recall,and 77.46% F1-score in detecting and recognizing rifle numbers.The proposed method is effective in detecting rifle numbers.