Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy the...Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy theory, a comprehensive evaluation model on groundwater resources carrying capacity is constructed with blind information. Then a risk assessment model of surcharge about groundwater resources carrying capacity is established on blind reliability theory. The probable value "*" matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of "groundwater carrying capacity v.s. accumulative reliability" can be gained Based on the graph, fuzzy membership degree of groundwater resources carrying capacity to each judgment level under different risk probability can be got. Thus, a comparatively reasonable judgment to groundwater resources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.展开更多
This paper is concerned with (3,n) and (4,n) regular quasi-cyclic Low Density Parity Check (LDPC) code constructions from elementary number theory.Given the column weight,we determine the shift values of the circulant...This paper is concerned with (3,n) and (4,n) regular quasi-cyclic Low Density Parity Check (LDPC) code constructions from elementary number theory.Given the column weight,we determine the shift values of the circulant permutation matrices via arithmetic analysis.The proposed constructions of quasi-cyclic LDPC codes achieve the following main advantages simultaneously:1) our methods are constructive in the sense that we avoid any searching process;2) our methods ensure no four or six cycles in the bipartite graphs corresponding to the LDPC codes;3) our methods are direct constructions of quasi-cyclic LDPC codes which do not use any other quasi-cyclic LDPC codes of small length like component codes or any other algorithms/cyclic codes like building block;4)the computations of the parameters involved are based on elementary number theory,thus very simple and fast.Simulation results show that the constructed regular codes of high rates perform almost 1.25 dB above Shannon limit and have no error floor down to the bit-error rate of 10-6.展开更多
The Number Theory comes back as the heart of unified Science, in a Computing Cosmos using the bases 2;3;5;7 whose two symmetric combinations explain the main lepton mass ratios. The corresponding Holic Principle induc...The Number Theory comes back as the heart of unified Science, in a Computing Cosmos using the bases 2;3;5;7 whose two symmetric combinations explain the main lepton mass ratios. The corresponding Holic Principle induces a symmetry between the Newton and Planck constants which confirm the Permanent Sweeping Holography Bang Cosmology, with invariant baryon density 3/10, the dark baryons being dephased matter-antimatter oscillation. This implies the DNA bi-codon mean isotopic mass, confirming to 0.1 ppm the electron-based Topological Axis, whose terminal boson is the base 2 c-observable Universe in the base 3 Cosmos. The physical parameters involve the Euler idoneal numbers and the special Fermat primes of Wieferich (bases 2) and Mirimanoff (base 3). The prime numbers and crystallographic symmetries are related to the 4-fold structure of the DNA bi-codon. The forgotten Eddington’s proton-tau symmetry is rehabilitated, renewing the supersymmetry quest. This excludes the concepts of Multiverse, Continuum, Infinity, Locality and Zero-mass Particle, leading to stringent predictions in Cosmology, Particle Physics and Biology.展开更多
This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmo...This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.展开更多
The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit form...The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit formula with particular relations involving the trivial and non-trivial roots of the Riemann Zeta function and the Primes. The aim of the paper is to demonstrate this relation at the fixed points of iterations of explicit formula, defined by functions of the form limT∈Ν→∞fT(zw)=zw,where, zwis a real number.展开更多
The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean ...The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean quadruples (a, b, c | d) of spatial geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>=d<sup>2</sup> with integers (a, b, c, d). Rules for a parametrization of the numbers (a, b, c, d) are derived and a list of all possible nonequivalent cases without common divisors up to d<sup>2</sup> is established. The 3D-Pythagorean quadruples are then generalized to 4D-Pythagorean quintuples (a, b, c, d | e) which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>+d<sup>2</sup>=e<sup>2</sup> and a parametrization is derived. Relations to the 4-square identity are discussed which leads also to the N-dimensional case. The initial 3D- and 4D-Pythagorean numbers are explicitly calculated up to d<sup>2</sup>, respectively, e<sup>2</sup>.展开更多
Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , ...Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number.展开更多
In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Th...In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.展开更多
The aim of this paper is to study the 3x + 1 problem based on the Collatz iterative formula. It can be seen from the iterative formula that the necessary condition for the Collatz iteration convergence is that its slo...The aim of this paper is to study the 3x + 1 problem based on the Collatz iterative formula. It can be seen from the iterative formula that the necessary condition for the Collatz iteration convergence is that its slope being less than 1. An odd number N that satisfies the condition of a slope less than 1 after n<sup>th</sup> Collatz iterations is defined as an n-step odd number. Through statistical analysis, it is found that after n<sup>th</sup> Collatz iterations, the iterative value of any n-step odd number N that is greater than 1 is less than N, which proves that the slope less than 1 is a sufficient and necessary condition for Collatz iteration convergence.展开更多
Prime numbers are the integers that cannot be divided exactly by another integer other than one and itself. Prime numbers are notoriously disobedient to rules: they seem to be randomly distributed among natural number...Prime numbers are the integers that cannot be divided exactly by another integer other than one and itself. Prime numbers are notoriously disobedient to rules: they seem to be randomly distributed among natural numbers with no laws except that of chance. Questions about prime numbers have been perplexing mathematicians over centuries. How to efficiently predict greater prime numbers has been a great challenge for many. Most of the previous studies focus on how many prime numbers there are in certain ranges or patterns of the first or last digits of prime numbers. Honestly, although these patterns are true, they help little with accurately predicting new prime numbers, as a deviation at any digit is enough to annihilate the primality of a number. The author demonstrates the periodicity and inter-relationship underlying all prime numbers that makes the occurrence of all prime numbers predictable. This knowledge helps to fish all prime numbers within one net and will help to speed up the related research.展开更多
After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first...After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed.展开更多
The 3x + 1 problem, is a math problem that has baffled mathematicians for over 50 years. It’s easy to explain: take any positive number, if it’s even, divide it by 2;if it’s odd, multiply it by 3 and add 1. Repeat ...The 3x + 1 problem, is a math problem that has baffled mathematicians for over 50 years. It’s easy to explain: take any positive number, if it’s even, divide it by 2;if it’s odd, multiply it by 3 and add 1. Repeat this process with the resulting number, and the conjecture says that you will eventually reach 1. Despite testing all starting values up to an enormous number, no one has proved the conjecture is true for all possible starting values. The problem’s importance lies in its simplicity and difficulty, inspiring new ideas in mathematics and advancing fields like number theory, dynamical systems, and computer science. Proving or disproving the conjecture would revolutionize our understanding of math. The presence of infinite sequences is a matter of question. To investigate and solve this conjecture, we are utilizing a novel approach involving the fields of number theory and computer science.展开更多
The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The ma...The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself.展开更多
In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-respo...In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.展开更多
A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic...A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic one, but is connected with the inverse of Sommerfeld’s fine-structure constant and this way again connected with the electron. From number-theoretical realities, including the reciprocity relation of the golden ratio as effective pre-calculator of nature’s creativeness, a proposed closeness to the icosahedron may point towards the structure of the electron, thought off as a single-strand compacted helically self-confined charged elemantary particle of less spherical but assumed blunted icosahedral shape generated from a high energy double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 180˚twisted double helix strand, where the turning points of 12 generated slings were arranged towards the vertices of a regular icosahedron, belonging to the non-centrosymmetric rotation group I532. Mathematically put, we convert the helical motion of an energy quantum into a stationary motion on a Moebius stripe structure. The radius of the ball is about the Compton radius. This chiral closed circuit Moebius ball motion profile can be tentatively thought off as the dominant quantum vortex structure of the electron, and the model may be named CEWMB (Charged Electromagnetic Wave Moebius Ball). Also the gyromagnetic factor of the electron (g<sub>e</sub> = 2.002319) can be traced back to this special structure. However, nature’s energy infinity principle would suggest a superposition with additional less dominant (secondary) structures, governed also by the golden mean. A suggestion about the possible structure of delocalized hole carriers in the superconducting state is given.展开更多
This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conj...This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">…</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">×</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study.展开更多
By combination of finite number theory and quantum information, the complete quantum information in the <em>DNA</em> genetic code has been made likely by <em>Planat et al</em>. (2020). In the p...By combination of finite number theory and quantum information, the complete quantum information in the <em>DNA</em> genetic code has been made likely by <em>Planat et al</em>. (2020). In the present contribution a varied quartic polynomial contrasting the polynomial used by <em>Planat et al</em>. is proposed that considered apart from the golden mean also the fifth power of this dominant number of nature to adapt the code information. The suggested polynomial is denoted as <em>g</em>(<em>x</em>) = <em>x</em><sup>4</sup> - <em>x</em><sup>3</sup> - (4 - <em><i style="white-space:normal;">ϕ</i></em><sup>2</sup> )<em>x</em><sup>2</sup> + (4 – <i>ϕ</i><sup>2</sup>)x + 1, where <img src="Edit_40efe764-d690-499f-8424-129f9ca46f78.bmp" alt="" /> is the golden mean. Its roots are changed to more golden mean based ones in comparison to the <em>Planat</em> polynomial. The new coefficients 4 – <em>ϕ</em><sup>2</sup> instead of 4 would implement the fifth power of the golden mean indirectly applying <img src="Edit_5b44b644-3f59-4fad-a586-ec5345ba6be4.bmp" alt="" />. As an outlook, it should be emphesized that the connection between genetic code and resonance code of the <em>DNA</em> may lead us to a full understanding of how nature stores and processes compacted information and what indeed is consciousness linking everything with each other suggestedly mediated by all-pervasive dark constituents of matter respectively energy. The number-theoretical approach to <em>DNA</em> coding leads to the question about the helical structure of the electron.展开更多
This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only o...This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below.展开更多
The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show th...The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements.展开更多
基金the Key Generalization Program of Science and Tech-nology Achievement of Water Resources Ministry of China (TG0608)
文摘Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy theory, a comprehensive evaluation model on groundwater resources carrying capacity is constructed with blind information. Then a risk assessment model of surcharge about groundwater resources carrying capacity is established on blind reliability theory. The probable value "*" matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of "groundwater carrying capacity v.s. accumulative reliability" can be gained Based on the graph, fuzzy membership degree of groundwater resources carrying capacity to each judgment level under different risk probability can be got. Thus, a comparatively reasonable judgment to groundwater resources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.
基金supported by the National Natural Science Foundation of China under Grants No.61172085,No.61103221,No.61133014,No.11061130539 and No.61021004
文摘This paper is concerned with (3,n) and (4,n) regular quasi-cyclic Low Density Parity Check (LDPC) code constructions from elementary number theory.Given the column weight,we determine the shift values of the circulant permutation matrices via arithmetic analysis.The proposed constructions of quasi-cyclic LDPC codes achieve the following main advantages simultaneously:1) our methods are constructive in the sense that we avoid any searching process;2) our methods ensure no four or six cycles in the bipartite graphs corresponding to the LDPC codes;3) our methods are direct constructions of quasi-cyclic LDPC codes which do not use any other quasi-cyclic LDPC codes of small length like component codes or any other algorithms/cyclic codes like building block;4)the computations of the parameters involved are based on elementary number theory,thus very simple and fast.Simulation results show that the constructed regular codes of high rates perform almost 1.25 dB above Shannon limit and have no error floor down to the bit-error rate of 10-6.
文摘The Number Theory comes back as the heart of unified Science, in a Computing Cosmos using the bases 2;3;5;7 whose two symmetric combinations explain the main lepton mass ratios. The corresponding Holic Principle induces a symmetry between the Newton and Planck constants which confirm the Permanent Sweeping Holography Bang Cosmology, with invariant baryon density 3/10, the dark baryons being dephased matter-antimatter oscillation. This implies the DNA bi-codon mean isotopic mass, confirming to 0.1 ppm the electron-based Topological Axis, whose terminal boson is the base 2 c-observable Universe in the base 3 Cosmos. The physical parameters involve the Euler idoneal numbers and the special Fermat primes of Wieferich (bases 2) and Mirimanoff (base 3). The prime numbers and crystallographic symmetries are related to the 4-fold structure of the DNA bi-codon. The forgotten Eddington’s proton-tau symmetry is rehabilitated, renewing the supersymmetry quest. This excludes the concepts of Multiverse, Continuum, Infinity, Locality and Zero-mass Particle, leading to stringent predictions in Cosmology, Particle Physics and Biology.
文摘This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.
文摘The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit formula with particular relations involving the trivial and non-trivial roots of the Riemann Zeta function and the Primes. The aim of the paper is to demonstrate this relation at the fixed points of iterations of explicit formula, defined by functions of the form limT∈Ν→∞fT(zw)=zw,where, zwis a real number.
文摘The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean quadruples (a, b, c | d) of spatial geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>=d<sup>2</sup> with integers (a, b, c, d). Rules for a parametrization of the numbers (a, b, c, d) are derived and a list of all possible nonequivalent cases without common divisors up to d<sup>2</sup> is established. The 3D-Pythagorean quadruples are then generalized to 4D-Pythagorean quintuples (a, b, c, d | e) which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>+d<sup>2</sup>=e<sup>2</sup> and a parametrization is derived. Relations to the 4-square identity are discussed which leads also to the N-dimensional case. The initial 3D- and 4D-Pythagorean numbers are explicitly calculated up to d<sup>2</sup>, respectively, e<sup>2</sup>.
文摘Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number.
文摘In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.
文摘The aim of this paper is to study the 3x + 1 problem based on the Collatz iterative formula. It can be seen from the iterative formula that the necessary condition for the Collatz iteration convergence is that its slope being less than 1. An odd number N that satisfies the condition of a slope less than 1 after n<sup>th</sup> Collatz iterations is defined as an n-step odd number. Through statistical analysis, it is found that after n<sup>th</sup> Collatz iterations, the iterative value of any n-step odd number N that is greater than 1 is less than N, which proves that the slope less than 1 is a sufficient and necessary condition for Collatz iteration convergence.
文摘Prime numbers are the integers that cannot be divided exactly by another integer other than one and itself. Prime numbers are notoriously disobedient to rules: they seem to be randomly distributed among natural numbers with no laws except that of chance. Questions about prime numbers have been perplexing mathematicians over centuries. How to efficiently predict greater prime numbers has been a great challenge for many. Most of the previous studies focus on how many prime numbers there are in certain ranges or patterns of the first or last digits of prime numbers. Honestly, although these patterns are true, they help little with accurately predicting new prime numbers, as a deviation at any digit is enough to annihilate the primality of a number. The author demonstrates the periodicity and inter-relationship underlying all prime numbers that makes the occurrence of all prime numbers predictable. This knowledge helps to fish all prime numbers within one net and will help to speed up the related research.
文摘After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed.
文摘The 3x + 1 problem, is a math problem that has baffled mathematicians for over 50 years. It’s easy to explain: take any positive number, if it’s even, divide it by 2;if it’s odd, multiply it by 3 and add 1. Repeat this process with the resulting number, and the conjecture says that you will eventually reach 1. Despite testing all starting values up to an enormous number, no one has proved the conjecture is true for all possible starting values. The problem’s importance lies in its simplicity and difficulty, inspiring new ideas in mathematics and advancing fields like number theory, dynamical systems, and computer science. Proving or disproving the conjecture would revolutionize our understanding of math. The presence of infinite sequences is a matter of question. To investigate and solve this conjecture, we are utilizing a novel approach involving the fields of number theory and computer science.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
文摘The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself.
基金Project (No. 60372076) supported by the National Natural ScienceFoundation of China
文摘In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.
文摘A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic one, but is connected with the inverse of Sommerfeld’s fine-structure constant and this way again connected with the electron. From number-theoretical realities, including the reciprocity relation of the golden ratio as effective pre-calculator of nature’s creativeness, a proposed closeness to the icosahedron may point towards the structure of the electron, thought off as a single-strand compacted helically self-confined charged elemantary particle of less spherical but assumed blunted icosahedral shape generated from a high energy double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 180˚twisted double helix strand, where the turning points of 12 generated slings were arranged towards the vertices of a regular icosahedron, belonging to the non-centrosymmetric rotation group I532. Mathematically put, we convert the helical motion of an energy quantum into a stationary motion on a Moebius stripe structure. The radius of the ball is about the Compton radius. This chiral closed circuit Moebius ball motion profile can be tentatively thought off as the dominant quantum vortex structure of the electron, and the model may be named CEWMB (Charged Electromagnetic Wave Moebius Ball). Also the gyromagnetic factor of the electron (g<sub>e</sub> = 2.002319) can be traced back to this special structure. However, nature’s energy infinity principle would suggest a superposition with additional less dominant (secondary) structures, governed also by the golden mean. A suggestion about the possible structure of delocalized hole carriers in the superconducting state is given.
文摘This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">…</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">×</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study.
文摘By combination of finite number theory and quantum information, the complete quantum information in the <em>DNA</em> genetic code has been made likely by <em>Planat et al</em>. (2020). In the present contribution a varied quartic polynomial contrasting the polynomial used by <em>Planat et al</em>. is proposed that considered apart from the golden mean also the fifth power of this dominant number of nature to adapt the code information. The suggested polynomial is denoted as <em>g</em>(<em>x</em>) = <em>x</em><sup>4</sup> - <em>x</em><sup>3</sup> - (4 - <em><i style="white-space:normal;">ϕ</i></em><sup>2</sup> )<em>x</em><sup>2</sup> + (4 – <i>ϕ</i><sup>2</sup>)x + 1, where <img src="Edit_40efe764-d690-499f-8424-129f9ca46f78.bmp" alt="" /> is the golden mean. Its roots are changed to more golden mean based ones in comparison to the <em>Planat</em> polynomial. The new coefficients 4 – <em>ϕ</em><sup>2</sup> instead of 4 would implement the fifth power of the golden mean indirectly applying <img src="Edit_5b44b644-3f59-4fad-a586-ec5345ba6be4.bmp" alt="" />. As an outlook, it should be emphesized that the connection between genetic code and resonance code of the <em>DNA</em> may lead us to a full understanding of how nature stores and processes compacted information and what indeed is consciousness linking everything with each other suggestedly mediated by all-pervasive dark constituents of matter respectively energy. The number-theoretical approach to <em>DNA</em> coding leads to the question about the helical structure of the electron.
文摘This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below.
文摘The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements.