期刊文献+
共找到347,858篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of the Erosion-Corrosion Mechanism of the Air Cooler in a Hydrocracking Unit:A Numerical and Experimental Study
1
作者 Su Guoqing Li Yan +1 位作者 Guo Hongli Zhang Jianwen 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期126-138,共13页
Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm... Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation. 展开更多
关键词 air cooler hydrocracking unit EROSION-CORROSION SIMULATION visualization experiment multiphase flow
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study
2
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
Experimental and numerical investigation on alternatives to sandy gravel
3
作者 V.Denefeld H.Aurich 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期130-141,共12页
The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbe... The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel. 展开更多
关键词 Improvised explosive device(IED) Specific impulse Momentum transfer Sandy gravel Glass spheres numerical model Soil moisture
下载PDF
Vertical impedance functions of pile groups under low-to-high loading amplitudes:numerical simulations and experimental validation 被引量:1
4
作者 Usama Zafar Chandra Shekhar Goit +1 位作者 Masato Saitoh Riku Fukuda 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期647-666,共20页
Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elasti... Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions. 展开更多
关键词 impedance functions numerical simulations model-scale experiment superposition approach soil-pile interface nonlinearity
下载PDF
Experimental research and numerical simulation of the multi-field performance of cemented paste backfill:Review and future perspectives 被引量:2
5
作者 Yong Wang Zhenqi Wang +4 位作者 Aixiang Wu Liang Wang Qing Na Chen Cao Gangfeng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期193-208,共16页
Cemented paste backfill(CPB)technology is a green mining method used to control underground goaves and tailings ponds.The curing process of CPB in the stope is the product of a thermo-hydro-mechanical-chemical multi-f... Cemented paste backfill(CPB)technology is a green mining method used to control underground goaves and tailings ponds.The curing process of CPB in the stope is the product of a thermo-hydro-mechanical-chemical multi-field performance interaction.At present,research on the multi-field performance of CPB mainly includes indoor similar simulation experiments,in-situ multi-field performance monitoring experiments,multi-field performance coupling model construction of CPB,and numerical simulation of the multi-field performance of CPB.Because it is hard to study the in-situ multi-field performance of CPB in the real stope,most current research on in-situ multi-field performance adopts the numerical simulation method.By simulating the conditions of CPB in the real stope(e.g.,maintenance environment,stope geometry,drainage conditions,and barricade and backfilling rates),the multi-field performance of CPB is further studied.This paper summarizes the mathematical models employed in the numerical simulation and lists the engineering application cases of numerical simulation in the in-situ multi-field performance of CPB.Finally,it proposes that the multi-field performance of CPB needs to strengthen the theoretical study of multi-field performance,form the strength design criterion based on the multi-field performance of CPB,perform a full-range numerical simulation of the multi-field performance of CPB,develop a pre-warning technology for the CPB safety of CPB,develop automatic and wireless sensors for the multi-field performance monitoring of CPB,and realize the application and popularization of CPB monitoring technology. 展开更多
关键词 cemented paste backfill multi-field performance in situ mathematic model numerical simulation
下载PDF
Blast wave characteristics of multi-layer composite charge:Theoretical analysis,numerical simulation,and experimental validation 被引量:1
6
作者 Jun-bao Li Wei-bing Li +2 位作者 Xiao-wen Hong Jia-xin Yu Jian-jun Zhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期91-102,共12页
This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the cha... This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the charge,a peak overpressure prediction model for the composite charge under singlepoint detonation and simultaneous detonation was established.The effects of the charge structure and initiation method on the overpressure field characteristics were investigated in AUTODYN simulation.The accuracy of the prediction model and the reliability of the numerical simulation method were subsequently verified in a series of static explosion experiments.The results reveal that the mass of the inner charge was the key factor determining the peak overpressure of the composite charge under single-point detonation.The peak overpressure in the radial direction improved apparently with an increase in the aspect ratio of the charge.The overpressure curves in the axial direction exhibited a multi-peak phenomenon,and the secondary peak overpressure even exceeded the primary peak at distances of 30D and 40D(where D is the charge diameter).The difference in peak overpressure among azimuth angles of 0-90°gradually decreased with an increase in the propagation distance of the shock wave.The coupled effect of the detonation energy of the inner and outer charge under simultaneous detonation improved the overpressure in both radial and axial directions.The difference in peak overpressure obtained from model prediction and experimental measurements was less than 16.4%. 展开更多
关键词 Blast wave characteristics Multi-layer composite charge Dimensional analysis AUTODYN mapping Model Explosion experiment
下载PDF
Experimental and Numerical Analysis of the Influence ofMicrochannel Size and Structure on Boiling Heat Transfer
7
作者 Ningbo Guo Xianming Gao +3 位作者 Duanling Li Jixing Zhang Penghui Yin Mengyi Hua 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3061-3082,共22页
Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and ... Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel. 展开更多
关键词 MICROCHANNEL boiling heat transfer BUBBLE numerical simulation visual experiment
下载PDF
Experimental and numerical studies of Ca(OH)_(2)/CaO dehydration process in a fixed-bed reactor for thermochemical energy storage
8
作者 Zhihao Zhang Danyang Song +2 位作者 Hengxing Bao Xiang Ling Xiaogang Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期11-20,共10页
The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendlin... The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendliness.The heat storage process of the Ca(OH)_(2)/CaO TCES system in a mixed heating reactor was evaluated in this study,by employing a combination of direct and indirect heating modes.The dehydration process was studied experimentally,and a numerical model was established and verified based on the experimental results.The dehydration behavior of 500 g of Ca(OH)_(2) powder was investigated in a fixed-bed reactor with mixed heating.The experimental and simulation results indicated that mixed heating causes combined centripetal and horizontal propulsion.Heat input is the main limiting factor in the heat storage process,because the radial advance of the reaction is hindered by the low thermal conductivity of the solid reactant particles.Heat transmission partitions were added to enhance the performance of the reactor.The performance of the modified reactor was compared with that of a conventional reactor.The radial heat transmission partitions in the modified reactor effectively enhance the energy storage rate and reduce the reaction time by 59.5%compared with the reactor without partitions. 展开更多
关键词 Thermochemical energy storage REACTOR Ca(OH)_(2)/CaO DEHYDRATION experiment research numerical simulation
下载PDF
Effects of CH_(4)/CO_(2) multi-component gas on components and properties of tight oil during CO_(2) utilization and storage: Physical experiment and composition numerical simulation
9
作者 Zhi-Hao Jia Ren-Yi Cao +5 位作者 Bin-Yu Wang Lin-Song Cheng Jin-Chong Zhou Bao-Biao Pu Fu-Guo Yin Ming Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3478-3487,共10页
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe... An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff. 展开更多
关键词 Multi-component gas Properties and components Core displacement experiment Nano-confinement numerical simulation CO_(2)utilization and storage
下载PDF
Noise color influence on escape times in nonlinear oscillators-experimental and numerical results
10
作者 Thomas Breunung Balakumar Balachandran 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第2期149-158,共10页
The interplay between noise and nonlinearites can lead to escape dynamics.Associated nonlinear phe-nomena have been observed in various applications ranging from climatology to biology and engineering.For reasons of c... The interplay between noise and nonlinearites can lead to escape dynamics.Associated nonlinear phe-nomena have been observed in various applications ranging from climatology to biology and engineering.For reasons of computational ease,in most studies,Gaussian white noise is used.However,this noise model is not physical due to the associated infinite energy content.Here,the authors present extensive experimental investigations and numerical simulations conducted to examine the impact of noise color on escape times in nonlinear oscillators.With a careful parameterization of the numerical simulations,the authors are able to make quantitative comparisons with experimental results.Through the experi-ments and simulations,it is illustrated that the noise color can drastically influence escape times and escape probability. 展开更多
关键词 Colored noise Non-Gaussian excitation experimentS Escape times
下载PDF
Prediction of ground-borne vibration induced by impact pile driving:numerical approach and experimental validation
11
作者 A.Colaço P.Alves Costa +2 位作者 C.Ferreira C.Parente J.Fernandez-Ruiz 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期921-935,共15页
Deep foundations are currently used in engineering practice to solve problems caused by weak geotechnical characteristics of the ground.Impact pile driving is an interesting and viable solution from economic and techn... Deep foundations are currently used in engineering practice to solve problems caused by weak geotechnical characteristics of the ground.Impact pile driving is an interesting and viable solution from economic and technical points of view.However,it is necessary to ensure that the environmental drawbacks,namely ground-borne vibration,are adequately met.For this purpose,the authors propose an axisymmetric finite element method-perfectly matched layer(FEM-PML)approach,where the nonlinear behavior of the soil is addressed through an equivalent linear methodology.Given the complexity of the problem,an experimental test site was developed and fully characterized.The experimental work comprised in-situ and laboratory soil characterization,as well as the measurement of vibrations induced during pile driving.The comparison between experimental and numerical results demonstrated a very good agreement,from which it can be concluded that the proposed numerical approach is suitable for the prediction of vibrations induced by impact pile driving.The experimental database is available as supplemental data and may be used by other researchers in the validation of their prediction models. 展开更多
关键词 pile driving ground-borne vibrations numerical modeling experimental validation
下载PDF
Experimental and numerical investigation on failure characteristics and mechanism of coal with different water contents
12
作者 Xuewei Liu Haixiao Chen +4 位作者 Bin Liu Sai Wang Quansheng Liu Yong Luo Jin Luo 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期325-342,共18页
Water injection, as a widely used technique to prevent coal burst, can restrain the fractured coal seam and released the energy storage. In this study, laboratory tests were frstly carried out on standard coal specime... Water injection, as a widely used technique to prevent coal burst, can restrain the fractured coal seam and released the energy storage. In this study, laboratory tests were frstly carried out on standard coal specimens with fve diferent water contents (i.e., 0%, 0.6%, 1.08%, 1.5%, 2.0%, and 2.3%). The failure mode, fragment size, and energy distribution characteristics of coal specimens were investigated. Experimental results show that strength, elastic strain energy, dissipated energy, brittleness index, as well as impact energy index decrease with increasing water content. Besides, the failure mode transitions gradually from splitting ejection to tensile-shear mixed failure mode as water content increases, and average fragment size shows positively related to water content. Moreover, scanning electron microscope tests results indicate that water in coal sample mainly causes the mineral softening and defects increase. Furthermore, a numerical model containing roadway excavation was established considering the water on coal burst prevention. Modelling results revealed that water injection can reduce degree of coal burst and ejection velocity of coal blocks, while it will raise up the depth of crack zone and surface displacement of roadway. Combined with laboratory tests and numerical results, the micro mechanism, energy mechanism, and engineering signifcance of water injection on coal burst prevention were fnally analyzed. 展开更多
关键词 Water content Coal burst Failure mode ENERGY numerical simulation
下载PDF
Packed Bed Thermocline Thermal Energy Storage for Medium-Temperature Concentrating Solar Systems: Numerical and Experimental Study
13
作者 Nikolaos Stathopoulos Nikolaos Papadimitriou +1 位作者 Vassilis Belessiotis Elias Papanicolaou 《Journal of Power and Energy Engineering》 2023年第5期1-23,共23页
Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between ... Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between power demand and supply. This paper discusses a packed bed thermocline tank as a thermal energy storage solution. Firstly, this paper presents the development of a numerical model calculating heat transfers within the tank, based on a discretization over several nodes and the nodal formulation of the heat balance equation. The model considers a filler material and a heat transferring fluid and uses the finite difference method to calculate the temperature evolution of the two media across the tank. The model was validated with two different packed bed systems from the literature during a discharging process, presenting a good fit with the experimental results. Secondly, the experimental packed bed is presented and characterized for a charging cycle from ambient temperature to approximately 180?C. The charging experiment was accurately reproduced with the numerical model requiring minimal computational time. Two additional charging modes were simulated with different inlet HTF conditions: constant temperature and varying temperature following the profile produced by a thermal solar collector field. The temperature profiles obtained from the three charging modes were analysed and compared to each other. The proposed numerical and experimental tools will be used in future studies for a better understanding of the design and operating conditions of packed bed thermal energy storage systems. 展开更多
关键词 Thermal Energy Storage Packed Bed numerical Model experimentAL
下载PDF
Numerical and experimental analyses of rock failure mechanisms due to microwave treatment
14
作者 Haitham M.Ahmed Adel Ahmadihosseini +5 位作者 Ferri Hassani Mohammed A.Hefni HussinA.M.Ahmed Hussein A.Saleem Essam B.Moustafa Agus P.Sasmito 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2483-2495,共13页
Despite the extensive studies conducted on the effectiveness of microwave treatment as a novel rock preconditioning method,there is yet to find reliable data on the rock failure mechanisms due to microwave heating.In ... Despite the extensive studies conducted on the effectiveness of microwave treatment as a novel rock preconditioning method,there is yet to find reliable data on the rock failure mechanisms due to microwave heating.In addition,there is no significant discussion on the energy efficiency of the method as one of the important factors among the mining and geotechnical engineers in the industry.This study presents a novel experimental method to evaluate two main rock failure mechanisms due to microwave treatment without applying any mechanical forces,i.e.distributed and concentrated heating.The result shows that the existence of a small and concentrated fraction of a strong microwave absorbing mineral will change the failure mechanism from the distributed heating to the concentrated heating,which can increase the weakening over microwave efficiency(WOME)by more than 10 folds.This observation is further investigated using the developed coupled numerical model.It is shown that at the same input energy,the existence of microwave absorbing minerals can cause major heat concentration inside the rock and increase the maximum temperature by up to three times. 展开更多
关键词 Microwave treatment numerical modeling Failure mechanism Energy efficiency Rock pre-conditioning
下载PDF
Experimental and Numerical Analysis of Particle Migration and Patterning Behavior in a Gravel Pack
15
作者 Bobo Luo Yunbin Xiong +5 位作者 Zhuoyi Li Zhanqing Qu Fenggang Liu Tiankui Guo Zugui Yang Yina Shi 《Fluid Dynamics & Materials Processing》 EI 2023年第4期911-928,共18页
Due to its long lifespan and high sand-removal efficiency,gravel packing is one of the most applied sand control methods during the recovery of reservoirs with sanding problems.The blockage and retention of injected s... Due to its long lifespan and high sand-removal efficiency,gravel packing is one of the most applied sand control methods during the recovery of reservoirs with sanding problems.The blockage and retention of injected sand in a gravel pack is a complex process affected by multiple mechanisms.The majority of existing studies based on the phenomenological deep bed filtration(DBF)theory focused on the gravel pack’s overall permeability damage and failed to obtain the inner-pore particle distribution pattern.In this work,experiments and simulations were carried out to reveal the particle distribution in a gravel pack during flooding.In particular,through real-time monitoring of particle migration,the penetration depth and distribution pattern of invaded particles with different gravel-sand particle ratios,fluid viscosities and injection rates could be determined.By simplifying each unit bed element(UBE)into a pore-throat structure with four tunnels(two horizontals for discharge and two verticals for sedimentation),a new network simulation method,which combines deep bed filtration with a particle trajectory model,was implemented.Cross comparison of experimental and numerical results demonstrates the validity and accuracy of the model. 展开更多
关键词 Gravel pack sand control deep bed filtration visual experiment particle trajectory
下载PDF
Numerical Simulation and Experimental Study of the Stress Formation Mechanism of FDM with Different Printing Paths
16
作者 Heping Hou Yang Yue +2 位作者 Jian Liu Darun Xi Shanhui Liu 《Journal of Renewable Materials》 SCIE EI 2023年第1期273-289,共17页
Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,su... Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,such as polylactic acid(PLA).However,internal complex thermal stress and deformations in part caused by an uneven distribution of PLA filament deposition temperatures during FDM,which will seriously affect the geometric accuracy of the printed part.In order to reduce material waste and environmental pollution during the printing process,the accuracy of PLA part can be improved.Herein,numerical simulation was carried out to investigate the temperature field and stress field during the building and cooling process of cuboid specimens.The effects of printing path on the thermal stress and temperature field during the building process were mainly studied.The results show that the printing path has a significant effect on the stress distribution.The most uni-form stress distribution and the smallest deformation were obtained using the Zig Zag printing path.Finally,the residual stress during the cooling process was collected using strain gauges embedded at the mid-plane of the FDM built cuboid specimens.The simulation results are consistent with the experimental results. 展开更多
关键词 Fused deposition molding numerical simulation strain gauges stress measurement
下载PDF
Experimental and numerical study on cyclic behavior of a UHPC-RC composite pier
17
作者 Zeng Xianzhi Zhu Shengchun +2 位作者 Deng Kailai Zhao Canhui Zhou Yiyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期731-745,共15页
Conventional reinforced concrete piers are vulnerable to severe compressive damage under strong earthquake conditions and are difficult to quickly rehabilitate.This paper develops a new type of composite pier,consisti... Conventional reinforced concrete piers are vulnerable to severe compressive damage under strong earthquake conditions and are difficult to quickly rehabilitate.This paper develops a new type of composite pier,consisting of ultra-high-performance concrete(UHPC)and reinforced concrete(RC).This UHPC-RC composite pier uses a UHPC cover outside of an RC core to achieve a high load-carrying capacity and mitigate compressive damage.An experiment is performed to evaluate the performance of the UHPC-RC composite pier under cyclic deformation.The crack development,ultimate failure modes,and load-carrying capacities of the pier are observed.Because of the extraordinary compressive strength of UHPC,the composite pier suffers little compressive damage under large lateral deformations.The composite pier fails as a result of fracturing of the reinforcement.A numerical model is developed to reproduce the cyclic behavior of the composite pier.On the basis of the verified numerical model,a parametric analysis is used to investigate the influence of the thickness of the UHPC cover and the axial load ratio.Finally,an approach is recommended for designing composite piers. 展开更多
关键词 composite pier UHPC cover cyclic behavior numerical analysis ultimate state design approach
下载PDF
Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
18
作者 郑博睿 张倩 +2 位作者 赵太飞 宋国正 陈全龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期172-178,共7页
The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is desig... The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies. 展开更多
关键词 plasma flow control plasma synthetic jet actuator pressure measurements numerical simulations
下载PDF
Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage:Theory,Experiments and Numerical Modelling
19
作者 Lisheng Luo Xinran Xie +2 位作者 Yongqiang Zhang Xiaofeng Zhang Xinyue Cui 《Journal of Renewable Materials》 SCIE EI 2023年第2期791-809,共19页
Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to pr... Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage,and consequently,the failure of such glulam beams cannot be predicted effectively.To address these issues,an analytical method considering material nonlinearity was proposed for glulam beams,and the calculating equations of deflection and shear stress distribution for different failure modes were established.The proposed method was verified by experiments and numerical models under the corresponding conditions.Results showed that the theoretical calculations were in good agreement with experimental and numerical results,indicating that the equations proposed in this paper were reliable and accurate for such glulam beams with wood material in the elastic-plastic stage ignoring the influence of mechanic properties in radial and tangential directions of wood.Furthermore,the experimental results reported by the previous studies indicated that the method was applicable and could be used as a theoretical reference for predicting the failure of glulam beams. 展开更多
关键词 Glulam beams load-deflection relationship shear stress distribution elastic-plastic stage numerical model
下载PDF
Numerical simulation and experimental verification of plasma jet development in gas gap switch
20
作者 董冰冰 郭志远 +2 位作者 张泽霖 文韬 向念文 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期159-169,共11页
Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the... Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the plasma jet process and its characteristic parameters are complicated and the existing test methods cannot fully characterize its development laws.In this work,a two-dimensional transient fluid calculation model of the plasma jet process of the gas gap switch is established based on the renormalization-group k-εturbulence equation.The results show that the characteristic parameters and morphological evolution of the plasma jet are basically consistent with the experimental results,which verifies the accuracy of the simulation model calculation.The plasma jet is a long strip with an initial velocity of 1.0 km·s-1and develops in both axial and radial directions.The jet velocity fluctuates significantly with axial height.As the plasma jet enters the main gap,the pressure inside the trigger cavity drops by80%,resulting in a rapid drop in the jet velocity.When the plasma jet head interacts with the atmosphere,the two-phase fluid compresses each other,generating a forward-propelled pressure wave.The plasma jet heads flow at high velocity,a negative pressure zone is formed in the middle part of the jet,and the pressure peak decreases gradually with height.As the value of the inlet pressure increases,the characteristic parameters of the plasma jet increase.The entrainment phenomenon is evident,which leads to an increase in the pressure imbalance of the atmospheric gas medium,leading to a significant Coanda effect.Compared with air,the characteristic parameters of a plasma jet in SF6are lower,and the morphological evolution is significantly suppressed.The results of this study can provide some insight into the mechanism of action of the switch jet plasma development process. 展开更多
关键词 gas gap switch plasma jet k-εturbulence model numerical calculation experimental verification
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部