期刊文献+
共找到177,014篇文章
< 1 2 250 >
每页显示 20 50 100
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:2
1
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles 被引量:1
2
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier numerical simulation Windproof efficiency Sedimentation erosion
下载PDF
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
3
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D numerical modeling
下载PDF
Numerical study on local scour characteristics around submarine pipelines in the Yellow River Delta silty sandy soil under waves and currents 被引量:1
4
作者 Peng Yu Ruigeng Hu +4 位作者 Jike Zhang Qi Yang Jieru Zhao Lei Cao Chenghao Zhu 《Deep Underground Science and Engineering》 2024年第2期182-196,共15页
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun... Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area. 展开更多
关键词 local scour numerical simulation submarine pipelines Yellow River Delta
下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study 被引量:1
5
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence numerical simulation Flow field characteristics Protection benefits
下载PDF
Numerical manifold method for thermo-mechanical coupling simulation of fractured rock mass 被引量:1
6
作者 Jiawei Liang Defu Tong +3 位作者 Fei Tan Xiongwei Yi Junpeng Zou Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1977-1992,共16页
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura... As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses. 展开更多
关键词 Heat conduction Fractured rock mass Crack propagation Galerkin variation numerical manifold method(NMM)
下载PDF
Analysis of debris flow control effect and hazard assessment in Xinqiao Gully,Wenchuan M_(s)8.0 earthquake area based on numerical simulation 被引量:1
7
作者 Chang Yang Yong-bo Tie +3 位作者 Xian-zheng Zhang Yan-feng Zhang Zhi-jie Ning Zong-liang Li 《China Geology》 CAS CSCD 2024年第2期248-263,共16页
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff... Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events. 展开更多
关键词 Landslide Debris flow Hazard assessment numerical simulation OpenLISEM Prevention and control project Wenchuan M_(s)8.0 earthquake Xinqiao Gully Sichuan province Geological hazards survey engineering
下载PDF
Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models
8
作者 Xiaoli Su Diyuan Li +3 位作者 Junjie Zhao Mimi Wang Xing Su Aohui Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1512-1524,共13页
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the... This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation. 展开更多
关键词 MICROWAVE numerical modeling microcracking phase change GRANITE
下载PDF
Numerical investigation of friction-heating-pressurization and its control parameters in the shear band of high-speed landslides
9
作者 ZHAO Nenghao CUI Shenghua LU Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3380-3395,共16页
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat... High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding. 展开更多
关键词 High-speed landslide Shear band Friction-heating-pressurization numerical investigation
下载PDF
Numerical simulations for radon migration and exhalation behavior during measuring radon exhalation rate with closed-loop method
10
作者 Ming Xia Yong-Jun Ye Shu-Yuan Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期81-95,共15页
Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experim... Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experiments are insufficient or cannot analyze the radon migration and exhalation patterns at the gas–solid interface in the accumulation chamber.The CFD-based technique was applied to predict the radon concentration distribution in a limited space,allowing radon accumulation and exhalation inside the chamber intuitively and visually.In this study,three radon exhalation rates were defined,and two structural ventilation tubes were designed for the chamber.The consistency of the simulated results with the variation in the radon exhalation rate in a previous experiment or analytical solution was verified.The effects of the vent tube structure and flow rate on the radon uniformity in the chamber;permeability,insertion depth,and flow rate on the radon exhalation rate and the effective diffusion coefficient on back-diffusion were investigated.Based on the results,increasing the inser-tion depth from 1 to 5 cm decreased the effective decay constant by 19.55%,whereas the curve-fitted radon exhalation rate decreased(lower than the initial value)as the deviation from the initial value increased by approximately 7%.Increasing the effective diffusion coefficient from 2.77×10^(-7) to 7.77×10^(-6) m^(2) s^(-1) made the deviation expand from 2.14 to 15.96%.The conclusion is that an increased insertion depth helps reduce leakage in the chamber,subject to notable back-diffusion,and that the closed-loop method is reasonably used for porous media with a low effective diffusion coefficient in view of the back-diffusion effect.The CFD-based simulation is expected to provide guidance for the optimization of the radon exhalation rate measurement method and,thus,the accurate measurement of the radon exhalation rate. 展开更多
关键词 Radon exhalation numerical simulation Accumulation chamber
下载PDF
Numerical study on the cavity dynamics for vertical water entries of twin spheres
11
作者 Xu Wang Xujian Lyu +1 位作者 Ruisheng Sun Dongdong Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期459-472,共14页
In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbul... In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbulence structure is described using the shear-stress transport k-ω(SST k-ω) model, and the volume of fluid(VOF) method is used to track the complex air-liquid interface. The motion of spheres during water entry is simulated using an independent overset grid. The numerical model is verified by comparing the cavity evolution results from simulations and experiments. Numerical results reveal that the time interval between the twin water entries evidently affects cavity expansion and contraction behaviors in the radial direction. However, this influence is significantly weakened by increasing the lateral distance between the two spheres. In synchronous water entries, pressure is reduced on the midline of two cavities during surface closure, which is directly related to the cavity volume. The evolution of vortexes inside the two cavities is analyzed using a velocity vector field, which is affected by the lateral distance and time interval of water entries. 展开更多
关键词 Twin water entries Side-by-side CAVITY numerical simulation
下载PDF
Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change
12
作者 Jingcheng Wang Zhentong Liu +2 位作者 Wei Chen Hongliang Chen Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1540-1553,共14页
A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten st... A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten steel and the subsequent reoxidation occurrence.The exposure of the molten steel was calculated using the coupled realizable k–εmodel and volume of fluid(VOF)model.The diffusion of dissolved oxygen was determined by solving the user-defined scalar(UDS)equation.Moreover,the user-defined function(UDF)was used to describe the source term in the UDS equation and determine the oxidation rate and oxidation position.The effect of the refilling speed on the molten steel exposure and dissolved oxygen content was also discussed.Increasing the refilling speed during ladle change reduced the refilling time and the exposure duration of the molten steel.However,the elevated refilling speed enlarged the slag eyes and increased the average dissolved oxygen content within the tundish,thereby exacerbating the reoxidation phenomenon.In addition,the time required for the molten steel with a high dissolved oxygen content to exit the tundish varied with the refilling speed.When the inlet speed was 3.0 m·s^(-1)during ladle change,the molten steel with a high dissolved oxygen content exited the outlet in a short period,reaching a maximum dissolved oxygen content of 0.000525wt%.Conversely,when the inlet speed was 1.8 m·s^(-1),the maximum dissolved oxygen content was 0.000382wt%.The refilling speed during the ladle change process must be appropriately decreased to minimize reoxidation effects and enhance the steel product quality. 展开更多
关键词 TUNDISH ladle change REOXIDATION multiphase flow numerical simulation
下载PDF
Numerical Investigation on the Harbour Resonance Inside A Harbour with Lateral Cavities
13
作者 YU Yue-min HUANG Xiao-hua 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期838-844,共7页
Wave-induced harbour resonance is numerically investigated inside a harbour with lateral cavities.The theoretical solutions for the amplification parameter are compared with the simulated results under varying dimensi... Wave-induced harbour resonance is numerically investigated inside a harbour with lateral cavities.The theoretical solutions for the amplification parameter are compared with the simulated results under varying dimensionless wave numbers in order to verify the simulation model in a rectangular harbour at a constant depth.The results indicate that the numerical model can correctly calculate the natural frequency and the natural wave height.A range of calculations are performed for harbour resonance with one pair of lateral cavities,two pairs of lateral cavities and three pairs of lateral cavities,respectively.The simulated results indicate that the amplitude of the amplification parameter decreases both at the primary natural oscillation and the secondary natural oscillation,as the number of lateral cavities increases.The dimensionless wave number reduces as the number of lateral cavities increases both at the primary natural oscillation and the secondary natural oscillation as well. 展开更多
关键词 harbour resonance lateral cavity numerical simulation amplification parameter
下载PDF
Numerical analysis of geosynthetic-reinforced embankment performance under moving loads
14
作者 Xuanming Ding Jinqiao Zhao +1 位作者 Qiang Ou Jianfei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期682-696,共15页
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ... The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment. 展开更多
关键词 Geosynthetic-reinforced layer numerical model Moving load EMBANKMENT DEFORMATION Stress
下载PDF
Multi-physical fields distribution in billet during helical electromagnetic stirring:A numerical simulation research
15
作者 Dong Pan Qing-tao Guo +3 位作者 Kai-lun Zhang Fu-zhi Yu Yu-ying Li Yu-bao Xiao 《China Foundry》 SCIE EI CAS CSCD 2024年第1期51-59,共9页
Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimens... Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets. 展开更多
关键词 BILLET electromagnetic stirring HELICAL SOLIDIFICATION element segregation numerical simulation
下载PDF
Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train
16
作者 Tian Li Hao Liang +1 位作者 Zerui Xiang Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第2期463-473,共11页
A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator typ... A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car. 展开更多
关键词 Vortex generator aerodynamic drag REDUCTION numerical simulation
下载PDF
Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating
17
作者 O.N.Goncharova V.B.Bekezhanova 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1667-1686,共20页
The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied.The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed.I... The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied.The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed.In particular,the cases of local heating from below and distributed thermal load from the lateral walls are considered.The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation.A benzine–air system is considered as reference system.The variation in time of the contact angle is described for both heating modes.Under lateral heating,near-wall boundary layers emerge together with strong convection,whereas the local thermal load from the lower wall results in the formation of multicellular motion in the entire volume of the fluids and the appearance of transition regimes followed by a steady-state mode.The results of the present study can aid the design of equipment for thermal coating or drying and the development of methods for the formation of patterns with required structure and morphology. 展开更多
关键词 Thermocapillary convection two-phase system numerical modeling contact angle
下载PDF
In-situ measurement via the flow-through method and numerical simulations for radon exhalation during measurements of the radon exhalation rate
18
作者 Ming Xia Yong-Jun Ye +2 位作者 Shan-Wei Shang Ting Yu Dai-Jia Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期192-207,共16页
Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods... Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements. 展开更多
关键词 Radon exhalation FLOW-THROUGH numerical simulation Accumulation chamber Multivariate regression
下载PDF
Experimental and numerical study of buckling-restrained braces configured with out-of-plane eccentricity under cyclic loading
19
作者 Cao Yongsheng Zhou Yun +3 位作者 Takagi Jiro Jiang Ke Deng Xuesong Fang Xiaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期957-971,共15页
This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio... This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load. 展开更多
关键词 buckling-restrained brace out-of-plane eccentricity EXPERIMENT numerical simulation mechanical properties
下载PDF
Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions
20
作者 Jin-chuan Wang Yu-bo Zuo +3 位作者 Qing-feng Zhu Jing Li Rui Wang Xu-dong Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期387-396,共10页
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ... Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone. 展开更多
关键词 aluminium DC casting flow field temperature field numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部