Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub's method is obtained. An error analysis is given ...Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub's method is obtained. An error analysis is given which matches the convergence order of the method. Finally, two examples are provided to show applications of our theorem.展开更多
In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sy...In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sylvester algebraic opera- tors that are shown to be invertible using original topological and differential calculus issued methods. The numerical scheme is proved to be consistent, convergent and sta- ble using the Lyapunov criterion, lax equivalence theorem and the properties of the generalized Lyapunov-Sylvester operators.展开更多
In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel fu...In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel functions to obtain analytic solutions in a uniform formfor a rapidly convergent series in the posed Sobolev space.Using the Gram-Schmidt orthogonality process,complete orthogonal essential functions are obtained in a compact field to encompass Fourier series expansion with the help of kernel properties reproduction.Consequently,by applying the standard RKHS method to each subinterval,approximate solutions that converge uniformly to the exact solutions are obtained.For this purpose,several numerical examples are tested to show proposed algorithm’s superiority,simplicity,and efficiency.The gained results indicate that themulti-step RKHSmethod is suitable for solving linear and nonlinear stiffness systems over an extensive duration and giving highly accurate outcomes.展开更多
This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of pla...This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi- tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi- mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so- lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.展开更多
This paper uses the theory of planar dynamic systems and the knowledge of reaction-diffusion equations,and then studies the bounded traveling wave solution of the generalized Boussinesq equation affected by dissipatio...This paper uses the theory of planar dynamic systems and the knowledge of reaction-diffusion equations,and then studies the bounded traveling wave solution of the generalized Boussinesq equation affected by dissipation and the influence of dissipation on solitary waves.The dynamic system corresponding to the traveling wave solution of the equation is qualitatively analyzed in detail.The influence of the dissipation coefficient on the solution behavior of the bounded traveling wave is studied,and the critical values that can describe the magnitude of the dissipation effect are,respectively,found for the two cases of b_3<0 and b_3>0 in the equation.The results show that,when the dissipation effect is significant(i.e.,r is greater than the critical value in a certain situation),the traveling wave solution to the generalized Boussinesq equation appears as a kink-shaped solitary wave solution;when the dissipation effect is small(i.e.,r is smaller than the critical value in a certain situation),the traveling wave solution to the equation appears as the oscillation attenuation solution.By using the hypothesis undetermined method,all possible solitary wave solutions to the equation when there is no dissipation effect(i.e.,r=0)and the partial kink-shaped solitary wave solution when the dissipation effect is significant are obtained;in particular,when the dissipation effect is small,an approximate solution of the oscillation attenuation solution can be achieved.This paper is further based on the idea of the homogenization principles.By establishing an integral equation reflecting the relationship between the approximate solution of the oscillation attenuation solution and the exact solution obtained in the paper,and by investigating the asymptotic behavior of the solution at infinity,the error estimate between the approximate solution of the oscillation attenuation solution and the exact solution is obtained,which is an infinitesimal amount that decays exponentially.The influence of the dissipation coefficient on the amplitude,frequency,period,and energy of the bounded traveling wave solution of the equation is also discussed.展开更多
The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials.The fractional derivative is described in the Caputo sen...The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials.The fractional derivative is described in the Caputo sense.Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable.By solving the algebraic equations,the numerical solutions are acquired.The method in general is easy to implement and yields good results.Numerical examples are provided to demonstrate the validity and applicability of the method.展开更多
This article studies bounded traveling wave solutions of variant Boussinesq equation with a dissipation term and dissipation effect on them. Firstly, we make qualitative analysis to the bounded traveling wave solution...This article studies bounded traveling wave solutions of variant Boussinesq equation with a dissipation term and dissipation effect on them. Firstly, we make qualitative analysis to the bounded traveling wave solutions for the above equation by the theory and method of planar dynamical systems, and obtain their existent conditions, number, and general shape. Secondly, we investigate the dissipation effect on the shape evolution of bounded traveling wave solutions. We find out a critical value r^* which can characterize the scale of dissipation effect, and prove that the bounded traveling wave solutions appear as kink profile waves if |r|≥ r^*; while they appear as damped oscillatory waves if |r| 〈 r^*. We also obtain kink profile solitary wave solutions with and without dissipation effect. On the basis of the above discussion, we sensibly design the structure of the approximate damped oscillatory solutions according to the orbits evolution relation corresponding to the component u(ξ) in the global phase portraits, and then obtain the approximate solutions (u(ξ), H(ξ)). Furthermore, by using homogenization principle, we give their error estimates by establishing the integral equation which reflects the relation between exact and approximate solutions. Finally, we discuss the dissipation effect on the amplitude, frequency, and energy decay of the bounded traveling wave solutions.展开更多
In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs wit...In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs with variable coefficients.The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem.The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by threevariable shifted Jacobi polynomials are compared with the exact solutions.Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm.Lastly,several numerical examples are presented to test the superiority and efficiency of the proposed method.展开更多
In this work, we present a priori error estimates of finite element approximations of the solution for the equilibrium equation of an axially loaded Ramberg-Osgood bar. The existence and uniqueness of the solution to ...In this work, we present a priori error estimates of finite element approximations of the solution for the equilibrium equation of an axially loaded Ramberg-Osgood bar. The existence and uniqueness of the solution to the associated nonlinear two point boundary value problem is established and used as a foundation for the finite element analysis.展开更多
In this paper, we focus on studying approximate solutions of damped oscillatory solutions of the compound KdV-Burgers equation and their error estimates. We employ the theory of planar dynamical systems to study trave...In this paper, we focus on studying approximate solutions of damped oscillatory solutions of the compound KdV-Burgers equation and their error estimates. We employ the theory of planar dynamical systems to study traveling wave solutions of the compound KdV-Burgers equation. We obtain some global phase portraits under different parameter conditions as well as the existence of bounded traveling wave solutions. Furthermore, we investigate the relations between the behavior of bounded traveling wave solutions and the dissipation coefficient r of the equation. We obtain two critical values of r, and find that a bounded traveling wave appears as a kink profile solitary wave if │r│ is greater than or equal to some critical value, while it appears as a damped oscillatory wave if │r│is less than some critical value. By means of analysis and the undetermined coefficients method, we find that the compound KdV-Burgers equation only has three kinds of bell profile solitary wave solutions without dissipation. Based on the above discussions and according to the evolution relations of orbits in the global phase portraits, we obtain all approximate damped oscillatory solutions by using the undetermined coefficients method. Finally, using the homogenization principle, we establish the integral equations reflecting the relations between exact solutions and approximate solutions of damped oscillatory solutions. Moreover, we also give the error estimates for these approximate solutions.展开更多
We investigate numerically the dynamical reactions of a moving wheelset model to real measured track irregularities.The background is to examine whether the dynamics are suitable as the input to the inverse problem:de...We investigate numerically the dynamical reactions of a moving wheelset model to real measured track irregularities.The background is to examine whether the dynamics are suitable as the input to the inverse problem:determine the true track geometry from measured wheelset dynamical reactions.It is known that the method works well for the vertical position of the rails but the computed lateral position is often flawed.We find that the lateral motion of the wheelset often may differ from the track geometry.The cases are investigated closely but the reasons remain unknown.While the wheelset dynamics reflect the larger(>4-6 mm)aperiodic track disturbances and single large disturbances quite well,this does not seem to be the case for general smaller or periodic track irregularities or sections behind single large disturbances.The resulting dynamics of a wheelset to lateral track irregularities are in general not sufficiently accurate to be used as the basis for a description of the track irregularities.展开更多
基金Supported by the National Natural Science Foundation of China (10871178)the Natural Science Foundation(Y606154)the Foundation of the Eduction Department of Zhejiang Province of China (Y200804008)
文摘Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub's method is obtained. An error analysis is given which matches the convergence order of the method. Finally, two examples are provided to show applications of our theorem.
文摘In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sylvester algebraic opera- tors that are shown to be invertible using original topological and differential calculus issued methods. The numerical scheme is proved to be consistent, convergent and sta- ble using the Lyapunov criterion, lax equivalence theorem and the properties of the generalized Lyapunov-Sylvester operators.
文摘In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel functions to obtain analytic solutions in a uniform formfor a rapidly convergent series in the posed Sobolev space.Using the Gram-Schmidt orthogonality process,complete orthogonal essential functions are obtained in a compact field to encompass Fourier series expansion with the help of kernel properties reproduction.Consequently,by applying the standard RKHS method to each subinterval,approximate solutions that converge uniformly to the exact solutions are obtained.For this purpose,several numerical examples are tested to show proposed algorithm’s superiority,simplicity,and efficiency.The gained results indicate that themulti-step RKHSmethod is suitable for solving linear and nonlinear stiffness systems over an extensive duration and giving highly accurate outcomes.
基金Project supported by the National Natural Science Foundation of China(No.11071164)the Innovation Program of Shanghai Municipal Education Commission(No.13ZZ118)+1 种基金the Shanghai Leading Academic Discipline Project(No.XTKX2012)the Innovation Fund Project for Graduate Stu-dent of Shanghai(No.JWCXSL1201)
文摘This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi- tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi- mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so- lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.
基金Project supported by the National Natural Science Foundation of China(No.11471215)。
文摘This paper uses the theory of planar dynamic systems and the knowledge of reaction-diffusion equations,and then studies the bounded traveling wave solution of the generalized Boussinesq equation affected by dissipation and the influence of dissipation on solitary waves.The dynamic system corresponding to the traveling wave solution of the equation is qualitatively analyzed in detail.The influence of the dissipation coefficient on the solution behavior of the bounded traveling wave is studied,and the critical values that can describe the magnitude of the dissipation effect are,respectively,found for the two cases of b_3<0 and b_3>0 in the equation.The results show that,when the dissipation effect is significant(i.e.,r is greater than the critical value in a certain situation),the traveling wave solution to the generalized Boussinesq equation appears as a kink-shaped solitary wave solution;when the dissipation effect is small(i.e.,r is smaller than the critical value in a certain situation),the traveling wave solution to the equation appears as the oscillation attenuation solution.By using the hypothesis undetermined method,all possible solitary wave solutions to the equation when there is no dissipation effect(i.e.,r=0)and the partial kink-shaped solitary wave solution when the dissipation effect is significant are obtained;in particular,when the dissipation effect is small,an approximate solution of the oscillation attenuation solution can be achieved.This paper is further based on the idea of the homogenization principles.By establishing an integral equation reflecting the relationship between the approximate solution of the oscillation attenuation solution and the exact solution obtained in the paper,and by investigating the asymptotic behavior of the solution at infinity,the error estimate between the approximate solution of the oscillation attenuation solution and the exact solution is obtained,which is an infinitesimal amount that decays exponentially.The influence of the dissipation coefficient on the amplitude,frequency,period,and energy of the bounded traveling wave solution of the equation is also discussed.
文摘The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials.The fractional derivative is described in the Caputo sense.Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable.By solving the algebraic equations,the numerical solutions are acquired.The method in general is easy to implement and yields good results.Numerical examples are provided to demonstrate the validity and applicability of the method.
基金supported by National Natural ScienceFoundation of China(11071164)Innovation Program of Shanghai Municipal Education Commission(13ZZ118)Shanghai Leading Academic Discipline Project(XTKX2012)
文摘This article studies bounded traveling wave solutions of variant Boussinesq equation with a dissipation term and dissipation effect on them. Firstly, we make qualitative analysis to the bounded traveling wave solutions for the above equation by the theory and method of planar dynamical systems, and obtain their existent conditions, number, and general shape. Secondly, we investigate the dissipation effect on the shape evolution of bounded traveling wave solutions. We find out a critical value r^* which can characterize the scale of dissipation effect, and prove that the bounded traveling wave solutions appear as kink profile waves if |r|≥ r^*; while they appear as damped oscillatory waves if |r| 〈 r^*. We also obtain kink profile solitary wave solutions with and without dissipation effect. On the basis of the above discussion, we sensibly design the structure of the approximate damped oscillatory solutions according to the orbits evolution relation corresponding to the component u(ξ) in the global phase portraits, and then obtain the approximate solutions (u(ξ), H(ξ)). Furthermore, by using homogenization principle, we give their error estimates by establishing the integral equation which reflects the relation between exact and approximate solutions. Finally, we discuss the dissipation effect on the amplitude, frequency, and energy decay of the bounded traveling wave solutions.
基金This work was supported by the Collaborative Innovation Center of Taiyuan Heavy Machinery Equipment,Postdoctoral Startup Fund of Taiyuan University of Science and Technology(20152034)the Natural Science Foundation of Shanxi Province(201701D221135)National College Students Innovation and Entrepreneurship Project(201710109003)and(201610109007).
文摘In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs with variable coefficients.The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem.The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by threevariable shifted Jacobi polynomials are compared with the exact solutions.Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm.Lastly,several numerical examples are presented to test the superiority and efficiency of the proposed method.
文摘In this work, we present a priori error estimates of finite element approximations of the solution for the equilibrium equation of an axially loaded Ramberg-Osgood bar. The existence and uniqueness of the solution to the associated nonlinear two point boundary value problem is established and used as a foundation for the finite element analysis.
基金Supported by the National Natural Science Foundation of China (No. 11071164)Shanghai Natural Science Foundation Project (No. 10ZR1420800)Leading Academic Discipline Project of Shanghai Municipal Government (No. S30501)
文摘In this paper, we focus on studying approximate solutions of damped oscillatory solutions of the compound KdV-Burgers equation and their error estimates. We employ the theory of planar dynamical systems to study traveling wave solutions of the compound KdV-Burgers equation. We obtain some global phase portraits under different parameter conditions as well as the existence of bounded traveling wave solutions. Furthermore, we investigate the relations between the behavior of bounded traveling wave solutions and the dissipation coefficient r of the equation. We obtain two critical values of r, and find that a bounded traveling wave appears as a kink profile solitary wave if │r│ is greater than or equal to some critical value, while it appears as a damped oscillatory wave if │r│is less than some critical value. By means of analysis and the undetermined coefficients method, we find that the compound KdV-Burgers equation only has three kinds of bell profile solitary wave solutions without dissipation. Based on the above discussions and according to the evolution relations of orbits in the global phase portraits, we obtain all approximate damped oscillatory solutions by using the undetermined coefficients method. Finally, using the homogenization principle, we establish the integral equations reflecting the relations between exact solutions and approximate solutions of damped oscillatory solutions. Moreover, we also give the error estimates for these approximate solutions.
文摘We investigate numerically the dynamical reactions of a moving wheelset model to real measured track irregularities.The background is to examine whether the dynamics are suitable as the input to the inverse problem:determine the true track geometry from measured wheelset dynamical reactions.It is known that the method works well for the vertical position of the rails but the computed lateral position is often flawed.We find that the lateral motion of the wheelset often may differ from the track geometry.The cases are investigated closely but the reasons remain unknown.While the wheelset dynamics reflect the larger(>4-6 mm)aperiodic track disturbances and single large disturbances quite well,this does not seem to be the case for general smaller or periodic track irregularities or sections behind single large disturbances.The resulting dynamics of a wheelset to lateral track irregularities are in general not sufficiently accurate to be used as the basis for a description of the track irregularities.