A numerical technique of the target-region locating (TRL) solver in conjunction with the wave-front method is presented for the application of the finite element method (FEM) for 3-D electromagnetic computation. F...A numerical technique of the target-region locating (TRL) solver in conjunction with the wave-front method is presented for the application of the finite element method (FEM) for 3-D electromagnetic computation. First, the principle of TRL technique is described. Then, the availability of TRL solver for nonlinear application is particularly discussed demonstrating that this solver can be easily used while still remaining great efficiency. The implementation on how to apply this technique in FEM based on magnetic vector potential (MVP) is also introduced. Finally, a numerical example of 3-D magnetostatic modeling using the TRL solver and FEMLAB is given. It shows that a huge computer resource can be saved by employing the new solver.展开更多
An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with...An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with dual shaped reflectors, and to analyse radiation patterns for the antennas. Several mathematical models and numerical techniques are presented.展开更多
Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation...Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation and optimization are of vital importance during design.In this process,various coupling effects need to be accurately predicted.With the significant progress of computational fluid dynamics(CFD),many advanced numerical models were proposed to simulate the complex coupling hydrodynamic problems in ship and ocean engineering field.In this paper,five key coupling hydrodynamic problems are introduced,which are hull-propeller-rudder coupling,wave-floating structure coupling,aerodynamic-hydrodynamic coupling,fluid structure coupling and fluid-noise coupling,respectively.The paper focuses on the numerical simulation techniques corresponding to each coupling problem,including the theories and the applications.Future directions and conclusions are provided finally.展开更多
In this manuscript,we consider a stochastic smoking epidemic model from behavioural sciences.Also,we develop a structure preserving numerical method to describe the dynamics of stochastic smoking epidemic model in a h...In this manuscript,we consider a stochastic smoking epidemic model from behavioural sciences.Also,we develop a structure preserving numerical method to describe the dynamics of stochastic smoking epidemic model in a human population.The structural properties of a physical system include positivity,boundedness and dynamical consistency.These properties play a vital role in non-linear dynamics.The solution for nonlinear stochastic models necessitates the conservation of these properties.Unfortunately,the aforementioned properties of the model have not been restored in the existing stochastic methods.Therefore,it is essential to construct a structure preserving numerical method for a reliable analysis of stochastic smoking model.The usual explicit stochastic numerical methods are time-dependent and violate most of the structural properties.In this work,we have developed the implicitly driven explicit method for the solution of stochastic smoking model.It is also proved that the newly developed method sustains all the aforementioned properties of the system.Finally,the convergence analysis of the newly developed method and graphical illustrations are presented.展开更多
The wave-based method (WBM) has been applied for the prediction of mid-frequency vibrations of fiat plates. The scaling factors, Gauss point selection rule and truncation rule are introduced to insure the wave model...The wave-based method (WBM) has been applied for the prediction of mid-frequency vibrations of fiat plates. The scaling factors, Gauss point selection rule and truncation rule are introduced to insure the wave model to converge. Numerical results show that the prediction tech- nique based on WBM is with higher accuracy and smaller computational effort than the one on FEM, which implies that this new technique on WBM can be applied to higher-frequency range.展开更多
In this paper,we discussed the effect of nanoparticles shape on bioconvection nanofluid flow over the vertical cone in a permeable medium.The nanofluid contains water,Al2O3 nanoparticles with sphere(spherical)and lami...In this paper,we discussed the effect of nanoparticles shape on bioconvection nanofluid flow over the vertical cone in a permeable medium.The nanofluid contains water,Al2O3 nanoparticles with sphere(spherical)and lamina(non-spherical)shapes and motile microorganisms.The phenomena of heat absorption/generation,Joule heating and thermal radiation with chemical reactions have been incorporated.The similarity transformations technique is used to transform a governing system of partial differential equations into ordinary differential equations.The numerical bvp4c MATLAB program is used to find the solution of ordinary differential equations.The interesting aspects of pertinent parameters on mass transfer,energy,concentration,and density of themotilemicroorganisms’profiles are computed and discussed.Our analysis depicts that the performance of sphere shape nanoparticles in the form of velocity distribution,temperature distribution,skin friction,Sherwood number and Motile density number is better than lamina(non-spherical)shapes nanoparticles.展开更多
It is shown in this note that the three methods, the orthonormalization method, the minor matrix method and the recursive reflection-transmission matrix method are closely related and solve the numerical instability i...It is shown in this note that the three methods, the orthonormalization method, the minor matrix method and the recursive reflection-transmission matrix method are closely related and solve the numerical instability in the original Thomson-Haskell propagator matrix method equally well. Another stable and efficient method based on the orthonormalization and the Langer block-diagonal decomposition is presented to calculate the response of a horizotttal stratified model to a plane, spectral wave. It is a numerically robust Thomson-Haskell matrix method for high frequencies, large layer thicknesses and horizontal slownesses. The technique is applied to calculate reflection-transmission coefficients, body wave receiver functions and Rayleigh wave dispersion.展开更多
A new Runge-Kutta (PK) fourth order with four stages embedded method with error control is presentea m this paper for raster simulation in cellular neural network (CNN) environment. Through versatile algorithm, si...A new Runge-Kutta (PK) fourth order with four stages embedded method with error control is presentea m this paper for raster simulation in cellular neural network (CNN) environment. Through versatile algorithm, single layer/raster CNN array is implemented by incorporating the proposed technique. Simulation results have been obtained, and comparison has also been carried out to show the efficiency of the proposed numerical integration algorithm. The analytic expressions for local truncation error and global truncation error are derived. It is seen that the RK-embedded root mean square outperforms the RK-embedded Heronian mean and RK-embedded harmonic mean.展开更多
Some experimental tests and improvements to the Very Fast Inversion of the Stokes Vector program, which is designed for the inversion calculation used by the Helioseismic and Magnetic Imager instrument on the Solar Dy...Some experimental tests and improvements to the Very Fast Inversion of the Stokes Vector program, which is designed for the inversion calculation used by the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory, are given. On one hand, the interpolation for calculating the Voigt function is not smooth, which may occasionally cause the iteration process to converge to different minima although they are very close to initial values. This problem can be solved by a smoother interpolation. On the other hand, in order to improve the performance of this program, we have tried to abandon the randomly-jump-out strategy and set the initial value properly to avoid non-global minima. The resulting method costs only 1//4 of the computational time, and will be very competitive when the users are only interested in the vectorial magnetic fields and the velocities along the line of sight.展开更多
Wavefront sensing from multiple focal plane images is a promising technique for high-contrast imaging systems.However,the wavefront error of an optics system can be properly reconstructed only when it is very small.Th...Wavefront sensing from multiple focal plane images is a promising technique for high-contrast imaging systems.However,the wavefront error of an optics system can be properly reconstructed only when it is very small.This paper presents an iterative optimization algorithm for the direct measurement of large static wavefront errors from only one focal plane image.We first measure the intensity of the pupil image to get the pupil function of the system and acquire the aberrated image on the focal plane with a phase error that will be measured.Then we induce a dynamic phase on the tested pupil function and calculate the associated intensity of the reconstructed image on the focal plane.The algorithm will then try to minimize the intensity difference between the reconstructed image and the aberrated test image in the focal plane,where the induced phase is a variable of the optimization algorithm.The simulation shows that the wavefront of an optical system can theoretically be reconstructed with high precision,which indicates that such an iterative algorithm may be an effective way to perform wavefront sensing for high-contrast imaging systems.展开更多
Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of inves- tigating the lunar subsurface structure and detecting the de...Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of inves- tigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The di- electric constant of the lunar regolith, the velocity of propagation, the reflection, re- fraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison be- tween the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.展开更多
DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the...DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.展开更多
With the fast increase in the resolution of astronomical images, the question of how to process and transfer such large images has become a key issue in astronomy. We propose a new real-time compression and fast recon...With the fast increase in the resolution of astronomical images, the question of how to process and transfer such large images has become a key issue in astronomy. We propose a new real-time compression and fast reconstruction algorithm for astronomical images based on compressive sensing techniques. We first reconstruct tile Original signal with fewer measurements, according to its compressibility. Then, based on the characteristics of astronomical images, we apply Daubechies orthogonal wavelets to obtain a sparse representation. A matrix representing a random Fourier ensembleis used to obtain a sparse representation in a lower dimensional space. For reconstructing the image, we propose a novel minimum total variation with block addptive sensing to balance the accuracy and eomputation time. Our experimental results show that the proposed algorithm can efficiently reconstruct colorful astronomicai images with high resolution and improve the applicability of compressed sensing.展开更多
Change in the temperature of band over its length, associated with the stock being non-uniformly heated in the furnace, influences the variations in the magnitudes of energy-force parameters. Using the FEM (Finite Ele...Change in the temperature of band over its length, associated with the stock being non-uniformly heated in the furnace, influences the variations in the magnitudes of energy-force parameters. Using the FEM (Finite Element Model) programs for the computation of the values of the energy-force parameters can take into account the distribution of temperature over the band length. The mathematical model of the computer program Forge2008 was used to theoretically examine the energy-force parameters and plastic metal flow in the roughing stands of the continuous rolling mill. The results of experimental investigation of influence of the non-uniform temperature distribution were presented on the metallic charge length on the energy and force parameters and dimensions of the band during round bars rolling. Thermovision monitoring energy and force parameters monitoring were carried out in continuous rolling mill D350 in one of the Polish industrial plants. On the basis of obtained results, it could be stated that non-uniform distribution of temperatures along the charge length causes local increase of energy and force parameters values and also such distribution affects the local increase of the width of rolled band. The rolling process of charge with non-uniform distribution of temperature could lead to exceeding required dimensional tolerances of the final products.展开更多
基金Open Funds of State Key Laboratory of MillimeterWaves,China (No. K200401), Outstanding Teaching and ResearchAwards for Young Teachers of Nanjing Normal University (No.1320BL51)
文摘A numerical technique of the target-region locating (TRL) solver in conjunction with the wave-front method is presented for the application of the finite element method (FEM) for 3-D electromagnetic computation. First, the principle of TRL technique is described. Then, the availability of TRL solver for nonlinear application is particularly discussed demonstrating that this solver can be easily used while still remaining great efficiency. The implementation on how to apply this technique in FEM based on magnetic vector potential (MVP) is also introduced. Finally, a numerical example of 3-D magnetostatic modeling using the TRL solver and FEMLAB is given. It shows that a huge computer resource can be saved by employing the new solver.
文摘An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with dual shaped reflectors, and to analyse radiation patterns for the antennas. Several mathematical models and numerical techniques are presented.
基金Project supported by the National Natural Science Foundation of China(Grant No.51879159,51809169 and 51909160)the National Key Research and Development Program of China(Grant Nos.2019YFB1704200,2019YFC0312400)+2 种基金This work was supported by the Chang Jiang Scholars Program(Grant No.T2014099)the Shanghai Excellent Academic Leaders Program(Grant No.17XD1402300)the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09).
文摘Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation and optimization are of vital importance during design.In this process,various coupling effects need to be accurately predicted.With the significant progress of computational fluid dynamics(CFD),many advanced numerical models were proposed to simulate the complex coupling hydrodynamic problems in ship and ocean engineering field.In this paper,five key coupling hydrodynamic problems are introduced,which are hull-propeller-rudder coupling,wave-floating structure coupling,aerodynamic-hydrodynamic coupling,fluid structure coupling and fluid-noise coupling,respectively.The paper focuses on the numerical simulation techniques corresponding to each coupling problem,including the theories and the applications.Future directions and conclusions are provided finally.
文摘In this manuscript,we consider a stochastic smoking epidemic model from behavioural sciences.Also,we develop a structure preserving numerical method to describe the dynamics of stochastic smoking epidemic model in a human population.The structural properties of a physical system include positivity,boundedness and dynamical consistency.These properties play a vital role in non-linear dynamics.The solution for nonlinear stochastic models necessitates the conservation of these properties.Unfortunately,the aforementioned properties of the model have not been restored in the existing stochastic methods.Therefore,it is essential to construct a structure preserving numerical method for a reliable analysis of stochastic smoking model.The usual explicit stochastic numerical methods are time-dependent and violate most of the structural properties.In this work,we have developed the implicitly driven explicit method for the solution of stochastic smoking model.It is also proved that the newly developed method sustains all the aforementioned properties of the system.Finally,the convergence analysis of the newly developed method and graphical illustrations are presented.
基金Project supported by the National Natural Science Foundation of China (No.10472035).
文摘The wave-based method (WBM) has been applied for the prediction of mid-frequency vibrations of fiat plates. The scaling factors, Gauss point selection rule and truncation rule are introduced to insure the wave model to converge. Numerical results show that the prediction tech- nique based on WBM is with higher accuracy and smaller computational effort than the one on FEM, which implies that this new technique on WBM can be applied to higher-frequency range.
文摘In this paper,we discussed the effect of nanoparticles shape on bioconvection nanofluid flow over the vertical cone in a permeable medium.The nanofluid contains water,Al2O3 nanoparticles with sphere(spherical)and lamina(non-spherical)shapes and motile microorganisms.The phenomena of heat absorption/generation,Joule heating and thermal radiation with chemical reactions have been incorporated.The similarity transformations technique is used to transform a governing system of partial differential equations into ordinary differential equations.The numerical bvp4c MATLAB program is used to find the solution of ordinary differential equations.The interesting aspects of pertinent parameters on mass transfer,energy,concentration,and density of themotilemicroorganisms’profiles are computed and discussed.Our analysis depicts that the performance of sphere shape nanoparticles in the form of velocity distribution,temperature distribution,skin friction,Sherwood number and Motile density number is better than lamina(non-spherical)shapes nanoparticles.
基金supported by National Natural Science Foundation of China(Nos.40374009 and 40574024)
文摘It is shown in this note that the three methods, the orthonormalization method, the minor matrix method and the recursive reflection-transmission matrix method are closely related and solve the numerical instability in the original Thomson-Haskell propagator matrix method equally well. Another stable and efficient method based on the orthonormalization and the Langer block-diagonal decomposition is presented to calculate the response of a horizotttal stratified model to a plane, spectral wave. It is a numerically robust Thomson-Haskell matrix method for high frequencies, large layer thicknesses and horizontal slownesses. The technique is applied to calculate reflection-transmission coefficients, body wave receiver functions and Rayleigh wave dispersion.
基金supported as a part of Technical Quality Improvement Programme (TEQIP)
文摘A new Runge-Kutta (PK) fourth order with four stages embedded method with error control is presentea m this paper for raster simulation in cellular neural network (CNN) environment. Through versatile algorithm, single layer/raster CNN array is implemented by incorporating the proposed technique. Simulation results have been obtained, and comparison has also been carried out to show the efficiency of the proposed numerical integration algorithm. The analytic expressions for local truncation error and global truncation error are derived. It is seen that the RK-embedded root mean square outperforms the RK-embedded Heronian mean and RK-embedded harmonic mean.
基金Supported by the National Natural Science Foundation of China
文摘Some experimental tests and improvements to the Very Fast Inversion of the Stokes Vector program, which is designed for the inversion calculation used by the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory, are given. On one hand, the interpolation for calculating the Voigt function is not smooth, which may occasionally cause the iteration process to converge to different minima although they are very close to initial values. This problem can be solved by a smoother interpolation. On the other hand, in order to improve the performance of this program, we have tried to abandon the randomly-jump-out strategy and set the initial value properly to avoid non-global minima. The resulting method costs only 1//4 of the computational time, and will be very competitive when the users are only interested in the vectorial magnetic fields and the velocities along the line of sight.
基金funded by the National Natural Science Foundation of China (Grant Nos.11003031 and 10873024)supported by the National Astronomical Observatories’ Special Fund for AstronomyPart of the workdescribed in this paper was carried out at California State University Northridge,with support from the National Science Foundation under grant ATM-0841440
文摘Wavefront sensing from multiple focal plane images is a promising technique for high-contrast imaging systems.However,the wavefront error of an optics system can be properly reconstructed only when it is very small.This paper presents an iterative optimization algorithm for the direct measurement of large static wavefront errors from only one focal plane image.We first measure the intensity of the pupil image to get the pupil function of the system and acquire the aberrated image on the focal plane with a phase error that will be measured.Then we induce a dynamic phase on the tested pupil function and calculate the associated intensity of the reconstructed image on the focal plane.The algorithm will then try to minimize the intensity difference between the reconstructed image and the aberrated test image in the focal plane,where the induced phase is a variable of the optimization algorithm.The simulation shows that the wavefront of an optical system can theoretically be reconstructed with high precision,which indicates that such an iterative algorithm may be an effective way to perform wavefront sensing for high-contrast imaging systems.
基金Supported by the National Natural Science Foundation of China
文摘Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of inves- tigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The di- electric constant of the lunar regolith, the velocity of propagation, the reflection, re- fraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison be- tween the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11190014,11503093,11403109 and 11373073)the Natural Science Foundation of Jiangsu Province(Grant No.BK20141042)
文摘DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.
基金Supported by the National Natural Science Foundation of China
文摘With the fast increase in the resolution of astronomical images, the question of how to process and transfer such large images has become a key issue in astronomy. We propose a new real-time compression and fast reconstruction algorithm for astronomical images based on compressive sensing techniques. We first reconstruct tile Original signal with fewer measurements, according to its compressibility. Then, based on the characteristics of astronomical images, we apply Daubechies orthogonal wavelets to obtain a sparse representation. A matrix representing a random Fourier ensembleis used to obtain a sparse representation in a lower dimensional space. For reconstructing the image, we propose a novel minimum total variation with block addptive sensing to balance the accuracy and eomputation time. Our experimental results show that the proposed algorithm can efficiently reconstruct colorful astronomicai images with high resolution and improve the applicability of compressed sensing.
文摘Change in the temperature of band over its length, associated with the stock being non-uniformly heated in the furnace, influences the variations in the magnitudes of energy-force parameters. Using the FEM (Finite Element Model) programs for the computation of the values of the energy-force parameters can take into account the distribution of temperature over the band length. The mathematical model of the computer program Forge2008 was used to theoretically examine the energy-force parameters and plastic metal flow in the roughing stands of the continuous rolling mill. The results of experimental investigation of influence of the non-uniform temperature distribution were presented on the metallic charge length on the energy and force parameters and dimensions of the band during round bars rolling. Thermovision monitoring energy and force parameters monitoring were carried out in continuous rolling mill D350 in one of the Polish industrial plants. On the basis of obtained results, it could be stated that non-uniform distribution of temperatures along the charge length causes local increase of energy and force parameters values and also such distribution affects the local increase of the width of rolled band. The rolling process of charge with non-uniform distribution of temperature could lead to exceeding required dimensional tolerances of the final products.