The biomass, macroelements (N, P, K, Ca, Mg) and microelements (Fe, Zn) contents were detected in organs of 1a-3a Eucalyptus grandis saplings, as well as their accumulated amount. Results showed that contents of n...The biomass, macroelements (N, P, K, Ca, Mg) and microelements (Fe, Zn) contents were detected in organs of 1a-3a Eucalyptus grandis saplings, as well as their accumulated amount. Results showed that contents of nutrient elements varied greatly in different organs. Total contents of macroelements N, P, K, Ca and Mg in1a-3a E. grandis were distributed in the order of stem phloem, leaves 〉 branch- es, roots 〉 stem xylem. Accumulated amount of macroelements in 1a-3a E. grandis were in the order of leaves 〉 branches 〉 stem phloem 〉 roots or stem xylem 〉 stem xylem or roots. Accumulated amount law of nutrient elements was not affected by the plant age. Microelements Fe and Zn were mainly concentrated in the leaves and roots. The accumulation of macroelements was in the order of Ca 〉 N 〉 K 〉 Mg 〉 P; and the microelements was in the order of Fe 〉 Zn. Accumulated amounts of microelements in 1a-3a E. grandis were 12.45 136.19 and 420.23 g per plants, respectively. Among the annual net accumulated amount of nutrient ele- ments per plant in 1a-3a E. grandis, Ca element was the maximum, N and K ele- ments took the second and third places. Mg element was relatively small and P el- ement was the minimum.展开更多
Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007...Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007 to September 2008. The results show that the changes of aboveground biomass during the growing season are best described by the twice function curve model, whereas the changes of belowground biomass follow the exponential increase curve model. Both the organic carbon contents in the above- and belowground plant parts show significant positive linear correlations with the growing time, and the coefficients R2 are 0.983 and 0.746, respectively. The carbon accu-mulations of the above- and belowground plant parts during the growing season show the same dynamics as those of the biomass. However, the nitrogen contents and accumulation in C. lasiocarpa aboveground and belowground parts show exponential increase during the growing season. The dynamics of C. lasiocarpa phosphorus contents follows the twice function curve model, whereas the accumulation of phosphorus shows the linear increase. The ratios of C/N in different parts of C. lasiocarpa fit the negative linear relations with total nitrogen content in the growing season. Moreover, the ratios of C/P in C. lasiocarpa plant also fit the negative linear relations with total phosphorus content. The results show that nitrogen is the primary limiting nutrient for C. lasiocarpa growth as compared with carbon and phosphorus.展开更多
A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated ...A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.展开更多
The dynamics of accumulations of plant dry matter, nutrient uptake and N fertilizer recovery were studied with different water and N supply, using summer maize (Zea mays L. var. Shandan9) as an indicator crop. The tot...The dynamics of accumulations of plant dry matter, nutrient uptake and N fertilizer recovery were studied with different water and N supply, using summer maize (Zea mays L. var. Shandan9) as an indicator crop. The total dry matter (including roots) and N, P, K uptake amounts were continuously increased with plant growth, and their accumulations with time during plant-growing period were shaped in S curves that could be described by exponential regression equations. Differentiating the regression equations fitting the curves over time for first derivatives, the momentary rate was obtained of the dry matter and nutrient uptake. Results show that the dry matter and the nutrient uptake were not in the same rate at all time, but changed from one time to another. Usually, the rate increased rapidly at early stages, and gradually decreased after reaching their peak. Of N, P and K, the uptake rate of N and K was higher, and their increase and decrease were both fast while P was reversed. The time of the maximum absorptive rate appeared earlier for K, followed by N, and then by P. In any case, the maximum nutrient uptake rate appeared earlier than did the dry matter. The momentary N recovery rate was similar in trend to those of dry matter and N uptake, and its maximum recovery rate occurred almost at the same time as its maximum uptake rate. Supplemental irrigation raised the cumulative and momentary rates of N. Although water and N supplies increased dry matter and nutrient uptake rates, they did not alter their changing trends during the plant-growing period.展开更多
[Objectives]This study was conducted to reveal the characteristics of nutrient absorption and accumulation in Pinus massoniana plantations in Northwestern Guangxi.[Methods]Based on field investigation and indoor analy...[Objectives]This study was conducted to reveal the characteristics of nutrient absorption and accumulation in Pinus massoniana plantations in Northwestern Guangxi.[Methods]Based on field investigation and indoor analysis,the contents,accumulation and annual net accumulation of five nutrient elements(N,P,K,Ca and Mg)in a mature P.massoniana plantation(26-year-old)in Nandan County,Guangxi Province were studied.[Results]The contents of nutrient elements in different organs of the mature P.massoniana plantation were the highest in the leaves,followed by the bark,branch and root,and the lowest in the stem.In general,among the contents of the five elements in different organs,N content was the highest,followed by K or Ca,and P and Mg were the lowest.The total accumulation of nutrient elements in the 26-year-old mature P.massoniana plantation in northwestern Guangxi was 1 384.05 kg/hm^2.Among the different structural levels of the stand,the tree layer had the highest accumulation of nutrient elements,which was 1 198.41 kg/hm^2,accounting for 86.59%of the total accumulation of nutrients in the plantation,and the accumulation of nutrients in other layers from the largest to the smallest was the litter layer(91.97 kg/hm^2),herb layer(49.86 kg/hm^2)and shrub layer(43.92 kg/hm^2),accounting for 3.17%,3.60%and 6.64%of the total nutrient accumulation of the plantation,respectively.The annual net accumulation of nutrient elements in the tree layer of the mature P.massoniana plantation was 46.09 kg/(hm^2·a),and the order of the annual net accumulation of different nutrient elements followed N>K>Ca>Mg>P;and the accumulation of 1 t of dry matter needed 6.37 kg of the five nutrients.[Conclusions]This study provides a scientific basis for the rational management of P.massoniana plantations,especially forest soil management.展开更多
The dynamics of biomass accumulation during the growing period, the yield of leafy stalks and tubers, and the nutrient concentration and nutrient uptake of the yield were investigated for two Jerusalem artichoke varie...The dynamics of biomass accumulation during the growing period, the yield of leafy stalks and tubers, and the nutrient concentration and nutrient uptake of the yield were investigated for two Jerusalem artichoke varieties (Tápiói Korai and Tápiói Sima) in a field experiment involving mineral fertilisation. Considerable differences were observed between the dynamics of leafy stalk and tuber development in Tápiói Korai which has a short vegetation period and Tápiói Sima where the vegetation period is long. The maximum dry matter ratio between the tuber yield and the leafy stalk yield was 1:1 for Tápiói Korai and 1:4.5 for Tápiói Sima. During the period when the maximum aboveground biomass developed in Tápiói Korai, 100 kg.ha-1 N and P fertiliser resulted in the highest leafy stalk yield (38.34 t.ha-1), while for Tápiói Sima, which developed a much greater leafy stalk mass, the highest aboveground biomass yield (78-80 t.ha-1) was given in response to 200 kg.ha-1 N supplemented by P and K fertiliser. Both artichoke varieties produced the great-est tuber yield at a N rate of 200 kg.ha-1, supplemented with P and K fertiliser. The nutrient concentration in the leafy stalks was highest on the 85th day of the vegetation period, prior to intensive dry matter accumulation in the leafy stalks and before tuber formation began. In both varieties the maximum nutrient uptake was recorded on the 155th day. Great differences were observed between the varieties in terms of specific nutrient uptake. For a tuber yield of 10 t, together with the corresponding leafy stalk yield, the specific nutrient uptake of the Tápiói Korai variety amounted to 48 kg N, 10 kg P, 83 kg K, 30 kg Ca and 10 kg Mg, while for Tápiói Sima these figures were 162 kg N, 30 kg P, 300 kg K, 84 kg Ca and 45 kg Mg.展开更多
Plastic film mulching affects changes in nutrient contents in soil and absorption and utilization of nutrients in plants were by changing hydrothermal condition of soil.The temporal and spatial variation of the total ...Plastic film mulching affects changes in nutrient contents in soil and absorption and utilization of nutrients in plants were by changing hydrothermal condition of soil.The temporal and spatial variation of the total soil salt and nutrient contents with mulch film removed at three different times during the early cotton growth stage and its effects on nutrient absorption and accumulation in cotton plants were studied over 2015-2017.The film removal treatments reduced salt accumulation in normal rainfall year(2017).Film removal increased contents of soil organic matter,the total phosphorus and available potassium at the end of growth stage,increased contents of soil hydrolyzable nitrogen and the total nitrogen in the surface soil layer(0-10 cm),and increased the total nitrogen contents in the deep soil layer(40-50 cm).Film removal increased accumulation of nitrogen and phosphorus nutrients in cotton plants in 2017 and accumulation of nitrogen,phosphorus and potassium nutrients in cotton plants in heavy rainfall year(2016).These experimental results indicated that removal of mulch film at an appropriate and targeted time in the bud stage of cotton promoted nutrient absorption.展开更多
[Objectives]To explore the nutrient accumulation characteristics of facility soil in different planting years in the lateritic red soil region of Guangxi.[Methods]The soil samples of facility cultivation and open fiel...[Objectives]To explore the nutrient accumulation characteristics of facility soil in different planting years in the lateritic red soil region of Guangxi.[Methods]The soil samples of facility cultivation and open field cultivation were collected in the lateritic red soil region of Guangxi,and the changes of soil pH,water-soluble salts,organic matter,available nutrients and total nutrients were analyzed.[Results]The acidification of the facility soil in the lateritic red soil region of Guangxi became more obvious with the extension of greenhouse planting years,the soil pH decreased by 0.34 units after continuous planting for 10 years,and the water-soluble content was more than 3 times that of the open field and it increased with the extension of the planting years.In addition,the degree of secondary salinization in facility soil became more serious,mainly moderate and mild salinization.The contents of soil organic matter,alkali-hydrolyzed nitrogen,available phosphorus,available potassium,total nitrogen and total phosphorus in the facility soil increased significantly,while total potassium did not change significantly.[Conclusions]This study is expected to provide a scientific basis for facility soil fertilization management,and to promote the sustainable and healthy development of facility cultivation industry.展开更多
A long-term (1982-2001) field experiment was conducted in a calcareous soil under wheat (Triticum aestivum L.)-wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system at Zhangye, Gansu Province, China...A long-term (1982-2001) field experiment was conducted in a calcareous soil under wheat (Triticum aestivum L.)-wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system at Zhangye, Gansu Province, China to determine the effects of long-term fertilization on crop yield, nutrients interactions, content and accumulation of nitrate-N in soil profiles. Twenty- four plots in a split-plot factorial with a combination of eight treatments (from nitrogen (N), phosphorus (P), potassium (K) and farmyard manure (M) applications) and 3 replications were selected. Main treatments were M and without M, and the sub-treatments were no-fertilizer (CK), N, NP and NPK. When P and K fertilizers were part of treatments, their ratio to N was 1N:0.22P:0.42K. All M, P and K fertilizers were applied as the basal dressing. The grain yield was harvested each experimental period and straw yield for the period from 1988 to 1997. After crop harvest in 2000, the soil was sampled from the 0-20, 20-60, 60-100, 100-140 and 140-180 cm depths to determine NO3^--N content. Maize yield of CK in 2000 was only 28.2% of that in 1984, and wheat in 2001 was 25.7% of that observed in 1982. Average impact of fertilizers on grain yield decreased in the order of N 〉 M 〉 P 〉 K. Yield response to N and P fertilizers increased with progress of the experiment. The impact of K fertilizer showed no increase in grain yield during the initial 6 years (1982-1987), moderate increase in the next 5 years (1988-1992), and considerable increase in the last 9 years (1993-2001). The straw yield trend was similar to grain yield. Accumulation and distribution of NO3^--N in soil was significantly affected by annual fertilizations. Mineral fertilizers (NP and NPK) led to NO3^- -N accumulation in most subsoil layers, with major impact in the 20-140 cm depth. The combination of mineral fertilizers and farmyard manure (MNP and MNPK) reduced soil NO3^--N accumulation in comparison to mineral fertilizers, It can be argued that long-term fertilization significantly enhanced grain and straw yield in this rotation scheme. The findings of this research suggest that it is important to balance application of mineral fertilizers and farmyard manure in order to protect soil and underground water from potential NO3^--N pollution while sustaining high productivity in the oasis agro-ecosystem.展开更多
The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alp...The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.展开更多
Estimating carbon sequestration and nutrient accumulation rates in Northeast China are important to assess wetlands function as carbon sink buffering greenhouse gas increasing in North Asia. The objectives of this stu...Estimating carbon sequestration and nutrient accumulation rates in Northeast China are important to assess wetlands function as carbon sink buffering greenhouse gas increasing in North Asia. The objectives of this study were to estimate accreting rates of carbon and nutrients in typical temperate wetlands. Results indicated that average soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) contents were 37.81%, 1.59% and 0.08% in peatlands, 5.33%, 0.25% and 0.05% in marshes, 2.92%, 0.27% and 0.10% in marshy meadows, respectively. Chronologies reconstructed by 210 Pb in the present work were acceptable and reliable, and the average time to yield 0–40 cm depth sediment cores was 150 years. Average carbon sequestration rate(Carbonsq), nitrogen and phosphorus accumulation rates were 219.4 g C/(m^2·yr), 9.16 g N/(m^2·yr) and 0.46 g P/(m^2·yr) for peatland; 57.13 g C/(m^2·yr), 5.42 g N/(m^2·yr) and 2.16 g P/(m^2·yr) for marshy meadow; 78.35 g C/(m^2·yr), 8.70 g N/(m^2·yr) and 0.71 g P/(m2·yr) for marshy; respectively. Positive relations existed between Carbonsq with nitrogen and precipitations, indicating that Carbonsq might be strengthened in future climate scenarios.展开更多
This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) ...This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) Ulva lactuca (Easters-Scheldt, the Netherlands). Mechanical pressure at 10 bar of fresh seaweed fronds casu quo biomass in the laboratory delivered seaweed moisture which was analyzed by Inductively Coupled Plasma Spectroscopy (ICP)-techniques for heavy-metals = [HM], (Al, As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb & Zn). Three important observations were made: 1) The [HM] in the seaweed moisture is higher than in the surrounding seawater which directs to mechanism(s) of bio-accumulation;2) The accumulation factor [AF] is varying per metallic-cation with an overall trend for our four seaweeds and sampling locations for [HM] are: As & Co & Cu: 5000 - 10,000 μg/l;Ni & Zn: 3000 - 5000 μg/l;Cd: 2000 - 3000 μg/l;Cr: 1000 - 2000 μg/l;Al: 200 - 1000 μg/l;Mo & Pb & Fe: 0 - 200 μg/l range. 3) Seaweed moisture detected that [HM]: Pb & Zn & Fe—which all three could not be detected in the seawater—supports the view that seaweeds have a preference in their bio-accumulation mechanism for these three HM. Major conclusion is in general that “overall” for the macro-elements Ca, Fe, K, Mg, Mn, Na, P & S in the moisture of the four seaweed species the concentration is lower in the seaweed species, or equals the concentration, in comparison to the surrounding sea water. For the HM (Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb & Zn) the opposite is the case species and is the concentration “overall” higher in the seaweed species in comparison to the surrounding sea water. Further topics addressed include strategies of irrigation of the Sahara desert with the moisture out of seaweeds under conditions of low anthropogenic influences.展开更多
To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conduct...To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conducted at 0,1,3,and 5 days before harvest.The appearance,respiration rate,mass-loss rate,electrolyte leakage,glucosinolate,ascorbic acid,total phenol,total flavonoid,total sugar and sucrose contents,and sucrose phosphate synthase(SPS),invertase(INV),sucrose synthase synthesis(SSS)and cleavage(SSC)activities of broccoli samples were observed after 0,2,4,6,8,and 10 days of storage.The results showed that spraying arginine at 5 days preharvest(5-ARG)helped to inhibit broccoli respiration during storage,delay electrolyte leakage,and maintain broccoli color.Furthermore,during the growth stage,total sugar accumulation was higher in the 5-ARG group.In addition,during the storage period,sucrose synthesis was accelerated,while sucrose cleavage was inhibited,resulting in more sucrose retention in postharvest broccoli.In conclusion,5-ARG resulted in the accumulation of more nutrients during the growth process and effectively delayed the quality decline during storage,thereby prolonging the shelf life of broccoli.Therefore,this study provides a theoretical basis for improving postharvest storage characteristics of broccoli through preharvest treatments.展开更多
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three diff...Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.展开更多
The above-ground biomass and nutrient accumulation by poplar plantations were evaluated for pulpwood production ]n China, Experimental treatments applied in a split-plot design included four planting densities (1111, ...The above-ground biomass and nutrient accumulation by poplar plantations were evaluated for pulpwood production ]n China, Experimental treatments applied in a split-plot design included four planting densities (1111, 833, 625 and 500 stems hm-2), three rotation lengths (4a, 5a and 6a) and three poplar clones (1-69.NL-80351 and 1-72). The highest biomass was achieved in the highest stocked stand (1111 stem hm-2’) at 6 of rotation age for both clone 1-69 and clone 1-72, which is about two times that in the stands of 500 stems hm-2 at 4 ofrotation age. However, the highest occurred in the stand of 833 stems-hm-2 at 6-year rotation for NL-80351. Ranking of the plantation biomass production by component was stem > branches > foliage> stem--bark and the production of the Support components of the plantation was 10-fold that of the productive component, i.e., foliage. Thepattern of accumulation of nutrients by the plantations was similar to the biomass. Nutrient accumulation in theplantations was in the order of Ca>N>K>Mg>P, but some differences existed in annual nutrient accumulationrates for four planting densities and three poplar clones, The mean annual accumulation of N and P in the plantations was 13.2 and 2.8 kg hm-2 in stem, 12.1 and 1 .9 kg hm 2 in branch, and 98.5 and 9.5 kghm’ in foliage. Themean Ca, K and Mg accumulations were 28.2, 1 8.5 and 2.9 kg’hm-2 a-1, 26,9. 11,0 and 2.3 kg-hm-2-a-1 in branch.and 116.5, 81 .3 and 16, 1 kg hm-2 a-1 in foliage, respectively. Biomass utilization standards markedly affected theexport of nutrients from the site, Whole tree utilization yields the most biomass and removes the most nutrients,Removal of stem with 2 10-cm diameter exports about half of the biomass, but N and nutrients removals are only23% and 28% of the total, respectively, Removal of the entire stem provides about tWo--thirds of the total biomassand removes 31,1% total N and 37.5 % total nutrients respectively. Including the branches in the removal increases biomass yield to 92% of the total, and nutrient removal is about 68% of the total,展开更多
基金Supported by the Key Laboratory of Forest Ecology and Resource Environment of Sichuan Province~~
文摘The biomass, macroelements (N, P, K, Ca, Mg) and microelements (Fe, Zn) contents were detected in organs of 1a-3a Eucalyptus grandis saplings, as well as their accumulated amount. Results showed that contents of nutrient elements varied greatly in different organs. Total contents of macroelements N, P, K, Ca and Mg in1a-3a E. grandis were distributed in the order of stem phloem, leaves 〉 branch- es, roots 〉 stem xylem. Accumulated amount of macroelements in 1a-3a E. grandis were in the order of leaves 〉 branches 〉 stem phloem 〉 roots or stem xylem 〉 stem xylem or roots. Accumulated amount law of nutrient elements was not affected by the plant age. Microelements Fe and Zn were mainly concentrated in the leaves and roots. The accumulation of macroelements was in the order of Ca 〉 N 〉 K 〉 Mg 〉 P; and the microelements was in the order of Fe 〉 Zn. Accumulated amounts of microelements in 1a-3a E. grandis were 12.45 136.19 and 420.23 g per plants, respectively. Among the annual net accumulated amount of nutrient ele- ments per plant in 1a-3a E. grandis, Ca element was the maximum, N and K ele- ments took the second and third places. Mg element was relatively small and P el- ement was the minimum.
基金This research was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2–YW–309)the Major State Basic Research Development Program of China (973 Program No. 2004CB418507)
文摘Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007 to September 2008. The results show that the changes of aboveground biomass during the growing season are best described by the twice function curve model, whereas the changes of belowground biomass follow the exponential increase curve model. Both the organic carbon contents in the above- and belowground plant parts show significant positive linear correlations with the growing time, and the coefficients R2 are 0.983 and 0.746, respectively. The carbon accu-mulations of the above- and belowground plant parts during the growing season show the same dynamics as those of the biomass. However, the nitrogen contents and accumulation in C. lasiocarpa aboveground and belowground parts show exponential increase during the growing season. The dynamics of C. lasiocarpa phosphorus contents follows the twice function curve model, whereas the accumulation of phosphorus shows the linear increase. The ratios of C/N in different parts of C. lasiocarpa fit the negative linear relations with total nitrogen content in the growing season. Moreover, the ratios of C/P in C. lasiocarpa plant also fit the negative linear relations with total phosphorus content. The results show that nitrogen is the primary limiting nutrient for C. lasiocarpa growth as compared with carbon and phosphorus.
基金supported by the National Key Technology R&D Program of China(2012BAD04B02,2013BAD07B02,and2011BAD16B10)the Special Fund for Agro-Scientific Research in the Public Interest(201103003 and 201303126-4)the Key Technology R&D Program of Jilin province,China(20126026)
文摘A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.
基金the projects(49890330,30230230,30070429 , 40201028) the Nat ional Natural Science Foundation of China(NSFC)+2 种基金 the project(G1999011707)the National Key Basic Research Support Funds(NKBRSF)the opportunity of thanking the NSFC and the NKBRSF for their kindness of supporting such projects.
文摘The dynamics of accumulations of plant dry matter, nutrient uptake and N fertilizer recovery were studied with different water and N supply, using summer maize (Zea mays L. var. Shandan9) as an indicator crop. The total dry matter (including roots) and N, P, K uptake amounts were continuously increased with plant growth, and their accumulations with time during plant-growing period were shaped in S curves that could be described by exponential regression equations. Differentiating the regression equations fitting the curves over time for first derivatives, the momentary rate was obtained of the dry matter and nutrient uptake. Results show that the dry matter and the nutrient uptake were not in the same rate at all time, but changed from one time to another. Usually, the rate increased rapidly at early stages, and gradually decreased after reaching their peak. Of N, P and K, the uptake rate of N and K was higher, and their increase and decrease were both fast while P was reversed. The time of the maximum absorptive rate appeared earlier for K, followed by N, and then by P. In any case, the maximum nutrient uptake rate appeared earlier than did the dry matter. The momentary N recovery rate was similar in trend to those of dry matter and N uptake, and its maximum recovery rate occurred almost at the same time as its maximum uptake rate. Supplemental irrigation raised the cumulative and momentary rates of N. Although water and N supplies increased dry matter and nutrient uptake rates, they did not alter their changing trends during the plant-growing period.
基金Supported by Special Fund for Innovation-driven Development in Guangxi Zhuangzu Autonomous Region(GK AA17204087-11)Natural Science Foundation of China(31560206 31760201)
文摘[Objectives]This study was conducted to reveal the characteristics of nutrient absorption and accumulation in Pinus massoniana plantations in Northwestern Guangxi.[Methods]Based on field investigation and indoor analysis,the contents,accumulation and annual net accumulation of five nutrient elements(N,P,K,Ca and Mg)in a mature P.massoniana plantation(26-year-old)in Nandan County,Guangxi Province were studied.[Results]The contents of nutrient elements in different organs of the mature P.massoniana plantation were the highest in the leaves,followed by the bark,branch and root,and the lowest in the stem.In general,among the contents of the five elements in different organs,N content was the highest,followed by K or Ca,and P and Mg were the lowest.The total accumulation of nutrient elements in the 26-year-old mature P.massoniana plantation in northwestern Guangxi was 1 384.05 kg/hm^2.Among the different structural levels of the stand,the tree layer had the highest accumulation of nutrient elements,which was 1 198.41 kg/hm^2,accounting for 86.59%of the total accumulation of nutrients in the plantation,and the accumulation of nutrients in other layers from the largest to the smallest was the litter layer(91.97 kg/hm^2),herb layer(49.86 kg/hm^2)and shrub layer(43.92 kg/hm^2),accounting for 3.17%,3.60%and 6.64%of the total nutrient accumulation of the plantation,respectively.The annual net accumulation of nutrient elements in the tree layer of the mature P.massoniana plantation was 46.09 kg/(hm^2·a),and the order of the annual net accumulation of different nutrient elements followed N>K>Ca>Mg>P;and the accumulation of 1 t of dry matter needed 6.37 kg of the five nutrients.[Conclusions]This study provides a scientific basis for the rational management of P.massoniana plantations,especially forest soil management.
文摘The dynamics of biomass accumulation during the growing period, the yield of leafy stalks and tubers, and the nutrient concentration and nutrient uptake of the yield were investigated for two Jerusalem artichoke varieties (Tápiói Korai and Tápiói Sima) in a field experiment involving mineral fertilisation. Considerable differences were observed between the dynamics of leafy stalk and tuber development in Tápiói Korai which has a short vegetation period and Tápiói Sima where the vegetation period is long. The maximum dry matter ratio between the tuber yield and the leafy stalk yield was 1:1 for Tápiói Korai and 1:4.5 for Tápiói Sima. During the period when the maximum aboveground biomass developed in Tápiói Korai, 100 kg.ha-1 N and P fertiliser resulted in the highest leafy stalk yield (38.34 t.ha-1), while for Tápiói Sima, which developed a much greater leafy stalk mass, the highest aboveground biomass yield (78-80 t.ha-1) was given in response to 200 kg.ha-1 N supplemented by P and K fertiliser. Both artichoke varieties produced the great-est tuber yield at a N rate of 200 kg.ha-1, supplemented with P and K fertiliser. The nutrient concentration in the leafy stalks was highest on the 85th day of the vegetation period, prior to intensive dry matter accumulation in the leafy stalks and before tuber formation began. In both varieties the maximum nutrient uptake was recorded on the 155th day. Great differences were observed between the varieties in terms of specific nutrient uptake. For a tuber yield of 10 t, together with the corresponding leafy stalk yield, the specific nutrient uptake of the Tápiói Korai variety amounted to 48 kg N, 10 kg P, 83 kg K, 30 kg Ca and 10 kg Mg, while for Tápiói Sima these figures were 162 kg N, 30 kg P, 300 kg K, 84 kg Ca and 45 kg Mg.
基金Supported by the Special Fund for Scientific Research in Non-profit Industries(Agriculture)(201503120)。
文摘Plastic film mulching affects changes in nutrient contents in soil and absorption and utilization of nutrients in plants were by changing hydrothermal condition of soil.The temporal and spatial variation of the total soil salt and nutrient contents with mulch film removed at three different times during the early cotton growth stage and its effects on nutrient absorption and accumulation in cotton plants were studied over 2015-2017.The film removal treatments reduced salt accumulation in normal rainfall year(2017).Film removal increased contents of soil organic matter,the total phosphorus and available potassium at the end of growth stage,increased contents of soil hydrolyzable nitrogen and the total nitrogen in the surface soil layer(0-10 cm),and increased the total nitrogen contents in the deep soil layer(40-50 cm).Film removal increased accumulation of nitrogen and phosphorus nutrients in cotton plants in 2017 and accumulation of nitrogen,phosphorus and potassium nutrients in cotton plants in heavy rainfall year(2016).These experimental results indicated that removal of mulch film at an appropriate and targeted time in the bud stage of cotton promoted nutrient absorption.
基金Science and Technology Program of Guangxi(Gui Ke AB18221096Gui Ke AB 21196019)Science and Technology Development Fund Project of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2020ZX03).
文摘[Objectives]To explore the nutrient accumulation characteristics of facility soil in different planting years in the lateritic red soil region of Guangxi.[Methods]The soil samples of facility cultivation and open field cultivation were collected in the lateritic red soil region of Guangxi,and the changes of soil pH,water-soluble salts,organic matter,available nutrients and total nutrients were analyzed.[Results]The acidification of the facility soil in the lateritic red soil region of Guangxi became more obvious with the extension of greenhouse planting years,the soil pH decreased by 0.34 units after continuous planting for 10 years,and the water-soluble content was more than 3 times that of the open field and it increased with the extension of the planting years.In addition,the degree of secondary salinization in facility soil became more serious,mainly moderate and mild salinization.The contents of soil organic matter,alkali-hydrolyzed nitrogen,available phosphorus,available potassium,total nitrogen and total phosphorus in the facility soil increased significantly,while total potassium did not change significantly.[Conclusions]This study is expected to provide a scientific basis for facility soil fertilization management,and to promote the sustainable and healthy development of facility cultivation industry.
文摘A long-term (1982-2001) field experiment was conducted in a calcareous soil under wheat (Triticum aestivum L.)-wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system at Zhangye, Gansu Province, China to determine the effects of long-term fertilization on crop yield, nutrients interactions, content and accumulation of nitrate-N in soil profiles. Twenty- four plots in a split-plot factorial with a combination of eight treatments (from nitrogen (N), phosphorus (P), potassium (K) and farmyard manure (M) applications) and 3 replications were selected. Main treatments were M and without M, and the sub-treatments were no-fertilizer (CK), N, NP and NPK. When P and K fertilizers were part of treatments, their ratio to N was 1N:0.22P:0.42K. All M, P and K fertilizers were applied as the basal dressing. The grain yield was harvested each experimental period and straw yield for the period from 1988 to 1997. After crop harvest in 2000, the soil was sampled from the 0-20, 20-60, 60-100, 100-140 and 140-180 cm depths to determine NO3^--N content. Maize yield of CK in 2000 was only 28.2% of that in 1984, and wheat in 2001 was 25.7% of that observed in 1982. Average impact of fertilizers on grain yield decreased in the order of N 〉 M 〉 P 〉 K. Yield response to N and P fertilizers increased with progress of the experiment. The impact of K fertilizer showed no increase in grain yield during the initial 6 years (1982-1987), moderate increase in the next 5 years (1988-1992), and considerable increase in the last 9 years (1993-2001). The straw yield trend was similar to grain yield. Accumulation and distribution of NO3^--N in soil was significantly affected by annual fertilizations. Mineral fertilizers (NP and NPK) led to NO3^- -N accumulation in most subsoil layers, with major impact in the 20-140 cm depth. The combination of mineral fertilizers and farmyard manure (MNP and MNPK) reduced soil NO3^--N accumulation in comparison to mineral fertilizers, It can be argued that long-term fertilization significantly enhanced grain and straw yield in this rotation scheme. The findings of this research suggest that it is important to balance application of mineral fertilizers and farmyard manure in order to protect soil and underground water from potential NO3^--N pollution while sustaining high productivity in the oasis agro-ecosystem.
基金funded by One Hundred Young Persons Project of Institute of Mountain Hazards and Environment (No.SDSQB-2010-02)the National Natural Science Foundation of China (No.41001177)Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX2-YW-QN31,KZCX2-XB3-08)
文摘The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.
基金Under the auspices of National Natural Science Foundation of China(No.41471081)Scientific Research Foundation of Graduate School of Northeast Normal University(No.12SSXT149)
文摘Estimating carbon sequestration and nutrient accumulation rates in Northeast China are important to assess wetlands function as carbon sink buffering greenhouse gas increasing in North Asia. The objectives of this study were to estimate accreting rates of carbon and nutrients in typical temperate wetlands. Results indicated that average soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) contents were 37.81%, 1.59% and 0.08% in peatlands, 5.33%, 0.25% and 0.05% in marshes, 2.92%, 0.27% and 0.10% in marshy meadows, respectively. Chronologies reconstructed by 210 Pb in the present work were acceptable and reliable, and the average time to yield 0–40 cm depth sediment cores was 150 years. Average carbon sequestration rate(Carbonsq), nitrogen and phosphorus accumulation rates were 219.4 g C/(m^2·yr), 9.16 g N/(m^2·yr) and 0.46 g P/(m^2·yr) for peatland; 57.13 g C/(m^2·yr), 5.42 g N/(m^2·yr) and 2.16 g P/(m^2·yr) for marshy meadow; 78.35 g C/(m^2·yr), 8.70 g N/(m^2·yr) and 0.71 g P/(m2·yr) for marshy; respectively. Positive relations existed between Carbonsq with nitrogen and precipitations, indicating that Carbonsq might be strengthened in future climate scenarios.
文摘This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) Ulva lactuca (Easters-Scheldt, the Netherlands). Mechanical pressure at 10 bar of fresh seaweed fronds casu quo biomass in the laboratory delivered seaweed moisture which was analyzed by Inductively Coupled Plasma Spectroscopy (ICP)-techniques for heavy-metals = [HM], (Al, As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb & Zn). Three important observations were made: 1) The [HM] in the seaweed moisture is higher than in the surrounding seawater which directs to mechanism(s) of bio-accumulation;2) The accumulation factor [AF] is varying per metallic-cation with an overall trend for our four seaweeds and sampling locations for [HM] are: As & Co & Cu: 5000 - 10,000 μg/l;Ni & Zn: 3000 - 5000 μg/l;Cd: 2000 - 3000 μg/l;Cr: 1000 - 2000 μg/l;Al: 200 - 1000 μg/l;Mo & Pb & Fe: 0 - 200 μg/l range. 3) Seaweed moisture detected that [HM]: Pb & Zn & Fe—which all three could not be detected in the seawater—supports the view that seaweeds have a preference in their bio-accumulation mechanism for these three HM. Major conclusion is in general that “overall” for the macro-elements Ca, Fe, K, Mg, Mn, Na, P & S in the moisture of the four seaweed species the concentration is lower in the seaweed species, or equals the concentration, in comparison to the surrounding sea water. For the HM (Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb & Zn) the opposite is the case species and is the concentration “overall” higher in the seaweed species in comparison to the surrounding sea water. Further topics addressed include strategies of irrigation of the Sahara desert with the moisture out of seaweeds under conditions of low anthropogenic influences.
文摘To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conducted at 0,1,3,and 5 days before harvest.The appearance,respiration rate,mass-loss rate,electrolyte leakage,glucosinolate,ascorbic acid,total phenol,total flavonoid,total sugar and sucrose contents,and sucrose phosphate synthase(SPS),invertase(INV),sucrose synthase synthesis(SSS)and cleavage(SSC)activities of broccoli samples were observed after 0,2,4,6,8,and 10 days of storage.The results showed that spraying arginine at 5 days preharvest(5-ARG)helped to inhibit broccoli respiration during storage,delay electrolyte leakage,and maintain broccoli color.Furthermore,during the growth stage,total sugar accumulation was higher in the 5-ARG group.In addition,during the storage period,sucrose synthesis was accelerated,while sucrose cleavage was inhibited,resulting in more sucrose retention in postharvest broccoli.In conclusion,5-ARG resulted in the accumulation of more nutrients during the growth process and effectively delayed the quality decline during storage,thereby prolonging the shelf life of broccoli.Therefore,this study provides a theoretical basis for improving postharvest storage characteristics of broccoli through preharvest treatments.
基金Project supported by the National Natural Science Foundation of China (No. 30530630)the Major State Basic Research and Development Program of China (No. G2000046802-05)the National Key Technologies Research and Development Program of China during the Tenth Five-Year Period (No. 2001BA606A-05)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX1-02)
文摘Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.
文摘The above-ground biomass and nutrient accumulation by poplar plantations were evaluated for pulpwood production ]n China, Experimental treatments applied in a split-plot design included four planting densities (1111, 833, 625 and 500 stems hm-2), three rotation lengths (4a, 5a and 6a) and three poplar clones (1-69.NL-80351 and 1-72). The highest biomass was achieved in the highest stocked stand (1111 stem hm-2’) at 6 of rotation age for both clone 1-69 and clone 1-72, which is about two times that in the stands of 500 stems hm-2 at 4 ofrotation age. However, the highest occurred in the stand of 833 stems-hm-2 at 6-year rotation for NL-80351. Ranking of the plantation biomass production by component was stem > branches > foliage> stem--bark and the production of the Support components of the plantation was 10-fold that of the productive component, i.e., foliage. Thepattern of accumulation of nutrients by the plantations was similar to the biomass. Nutrient accumulation in theplantations was in the order of Ca>N>K>Mg>P, but some differences existed in annual nutrient accumulationrates for four planting densities and three poplar clones, The mean annual accumulation of N and P in the plantations was 13.2 and 2.8 kg hm-2 in stem, 12.1 and 1 .9 kg hm 2 in branch, and 98.5 and 9.5 kghm’ in foliage. Themean Ca, K and Mg accumulations were 28.2, 1 8.5 and 2.9 kg’hm-2 a-1, 26,9. 11,0 and 2.3 kg-hm-2-a-1 in branch.and 116.5, 81 .3 and 16, 1 kg hm-2 a-1 in foliage, respectively. Biomass utilization standards markedly affected theexport of nutrients from the site, Whole tree utilization yields the most biomass and removes the most nutrients,Removal of stem with 2 10-cm diameter exports about half of the biomass, but N and nutrients removals are only23% and 28% of the total, respectively, Removal of the entire stem provides about tWo--thirds of the total biomassand removes 31,1% total N and 37.5 % total nutrients respectively. Including the branches in the removal increases biomass yield to 92% of the total, and nutrient removal is about 68% of the total,