Nutrient deficiency stresses often occur simultaneously in soil. Thus, it's necessary to investigate the mechanisms underlying plant responses to multiple stresses through identification of some key stress-responsive...Nutrient deficiency stresses often occur simultaneously in soil. Thus, it's necessary to investigate the mechanisms underlying plant responses to multiple stresses through identification of some key stress-responsive genes. Quantitative real-time PCR (qRT-PCR) is essential for detecting the expression of the interested genes, of which the selection of suitable reference genes is a crucial step before qRT-PCR. To date, reliable reference genes to normalize qRT-PCR data under different nutrient deficiencies have not been reported in plants. In this study, expression of ten candidate reference genes was detected in leaves and roots of rapeseed (Brassica napus L.) after implementing different nutrient deficiencies for 14 days. These candidate genes, included two traditionally used reference genes and eight genes selected from an RNA- Seq dataset. Two software packages (GeNorm, NormFinder) were employed to evaluate candidate gene stability. Results showed that VHA-E1 was the highest-ranked gene in leaves of nutrient-deficient rapeseed, while VHA-G1 and UBC21 were most stable in nutrient-deficient roots. When rapeseed leaves and roots were combined, UBC21, HTB1, VHA-G1 and A CT7 were most stable among all samples. To evaluate the stabilities of the highest-ranked genes, the relative expression of two target genes, BnTrxl;1 and BnPhtl;3 Were further determined. The results showed that the relative expression of BnTrxl;1 depended on reference gene selection, suggesting that it's necessary to evaluate the stability of reference gene prior to qRT-PCR. This study provides suitable reference genes for gene expression analysis of rapeseed responses to different nutrient deficiencies, which is essential for elucidation of mechanisms underlying rapeseed responses to multiple nutrient deficiency stresses展开更多
Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adap...Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adaptation to such nutrient stresses.In this study,we used transcriptomics and proteomics to analyze how soybean(Glycine max)and its parasitizing dodder(Cuscuta australis)respond to nitrate and phosphate deficiency(-N and-P).After-N and-P treatment,the soybean and dodder plants exhibited substantial changes of transcriptome and proteome,although soybean plants showed very few transcriptional responses to-P and dodder did not show any transcriptional changes to either-N or-P.Importantly,large-scale interplant transport of mRNAs and proteins was detected.Although the mobile mRNAs only comprised at most 0.2%of the transcriptomes,the foreign mobile proteins could reach 6.8%of the total proteins,suggesting that proteins may be the major forms of interplant communications.Furthermore,the interplant mobility of macromolecules was specifically affected by the nutrient regimes and the transport of these macromolecules was very likely independently regulated.This study provides new insight into the communication between host plants and parasites under stress conditions.展开更多
Objective] This study aimed to investigate the effects of exogenous or-ganic acids on dehydrogenase activity in dark brown forest soils under nutrient defi-ciency. [Method] Different proportions of A1 and B horizon da...Objective] This study aimed to investigate the effects of exogenous or-ganic acids on dehydrogenase activity in dark brown forest soils under nutrient defi-ciency. [Method] Different proportions of A1 and B horizon dark brown forest soils (A1∶B=1∶2) were utilized to establish soil conditions with nutrient deficiency for cultivation of Larix olgensis seedlings. The effects of oxalic acid, citric acid and succinic acid on dehydrogenase activity in dark brown forest soils under nutrient deficiency were studied systematical y by adding different concentrations of organic acid solutions. [Result] Under nutrient deficiency, dehydrogenase activity in dark brown forest soils was reduced significantly, and the reduction increased with the extension of stress duration. Most organic acid treatments improved dehydrogenase activity in nutrient-deficient dark brown forest soils, and the effects varied with different treatment du-ration and types and concentrations of organic acids. Furthermore, 10.0, 5.0 and 10.0 mmol/L organic acid treatments exhibited the most significant effects on day 10, 20 and 30, respectively. The increment of dehydrogenase activity in different durations showed a downward trend of 30 d〉20 d〉10 d; the improvement effects of three organic acids on dehydrogenase activity showed a downward trend of succinic acid〉 citric acid〉oxalic acid. [Conclusion] Exogenous organic acids improved signifi-cantly dehydrogenase activity in dark brown forest soils under nutrient deficiency and also improved the microbial activity and soil fertility to a certain extent.展开更多
Different proportions of A1 and B horizons dark brown forest soils (A1∶B=1∶2) were utilized to set the soil nutrient deficient conditions, and Larix olgensis seedlings were cultivated. By simulating organic acids ...Different proportions of A1 and B horizons dark brown forest soils (A1∶B=1∶2) were utilized to set the soil nutrient deficient conditions, and Larix olgensis seedlings were cultivated. By simulating organic acids concentrations in forest litter leachates of northeast China, the effects and mechanism of different concentrations of organic acid solutions on phosphorus (P) availability of dark brown forest soils and P absorption of Larix olgensis seedlings with nutrient deficiency were studied. The results showed that, compared with A1 horizon soils, available P contents of mixed soils in A1 and B horizons decreased, and P accumulation and efficiency of P uptake in root and leaves of Larix olgensis seedlings also decreased, but efficiency of P utilization increased. After treatments of exogenous organic acids, available P contents of mixed soils increased and the impact sequence of different organic acids were succinic acid 〉 citric acid 〉 oxalic acid; the concentration of 5.0 mmol/L had the best function, and the best effect of organic acids was at 20 d. Organic acids also increased P accumulation and efficiency of P uptake in roots and leaves of Larix olgensis seedlings, but decreased efficiency of P utilization. The impact strength of organic acids on P accumulation and efficiency of P uptake varied with treatment time, type and concentration of organic acids. The results of 20 d and 30 d in roots were higher than those of 10 d, however, the results of 10 d and 20 d in leaves were higher than those of 30 d, thus, at the earlier stage of organic acids treatments, more P absorbed were transferred to leaves, and at the later stage, more P would be accumulated in roots. The concentration of 10.0 mmol/L had the best function, and the impact sequence of different organic acids was succinic acid 〉 citric acid 〉 oxalic acid. Therefore, organic acids might contribute to P absorption and accumulation by Larix olgensis seedlings, final y increasing the adaptability and endurance of Larix olgensis seedlings to nutrient deficient soils.展开更多
Direct-sowing establishment method has great significance in improving winter oilseed rape(Brassica napus L.) production and guaranteeing edible oil security in China. However, nutrient responses on direct sown wint...Direct-sowing establishment method has great significance in improving winter oilseed rape(Brassica napus L.) production and guaranteeing edible oil security in China. However, nutrient responses on direct sown winter oilseed rape(DOR) performance and population development dynamic are still not well understood. Therefore, five on-farm experiments were conducted in the reaches of the Yangtze River(RYR) to determine the effects of nitrogen(N), phosphorus(P), and potassium(K) deficiencies on population density, dry matter production, nutrient uptake, seed yield, and yield components of DOR plants. Four fertilization treatments included the balanced NPK application treatment(NPK, 180 kg N, 39.3 kg P, 100 kg K, and 1.8 kg borax ha–1) and three nutrient deficiency treatments based on the NPK treatment, i.e., –N, –P, and –K. The results indicated that DOR population density declined gradually throughout the growing season, especially at over-wintering and pod-development stages. Nutrient deficiency decreased nutrient concentration in DOR plants, limited dry matter production and nutrient uptake, and thereby exacerbated density reduction during plants growth. The poor individual growth and reduced population density together decreased seed yield in the nutrient deficiency treatment. Averaged across all the experiments, seed yield reduced 61% by N deficiency, 38.3% by P deficiency, and 14.4% by K deficiency. The negative effects of nutrient deficiency on DOR performances followed the order of –N–P–K, and the effects were various among different nutrient deficiencies. Although N deficiency improved DOR emergence, but it seriously limited dry matter production and nutrient uptake, which in turn led to substantial plants death and therefore resulted in a very low harvested density. The P deficiency significantly reduced initial density, limited plants growth, and exacerbated density reduction. The K deficiency mainly decreased individual growth and yield, but did not affect density dynamic. Our results highlighted the importance of balanced NPK application in DOR production, suggesting that management strategy of these nutrients should be comprehensively considered with an aim to build an appropriate population structure with balanced plant density and individual growth.展开更多
What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore th...What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore the functional mechanism of nutrient elements during the course of RA construction. The cultivation system of filter paper is utilized to research the effect of nutrient deficiency on the RA of Malus hupehensis (Pamp.) Rehd. There may be eight types of RA. In complete Hogland solution, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root". With the lack of P, K or Ca, the main type of RA is "lateral roots clustering in the upper region primary root", and the "lateral roots clustering in the upper and middle regions of primary root" types of RA decrease. But with shortage of P, the type of lateral roots clustering in the upper and lower regions of primary root increases, and the type of lateral roots clustering in the middle region of primary root decreases, with the types of RA diversified. Under the condition of K deficiency, the type of no lateral root increases and types of lateral roots clustering in the middle region of primary root decrease, and the percentage of such types as "no lateral root", "lateral roots clustering in the upper region of primary root", and "lateral roots clustering in the upper and middle regions of primary root" accounts for 97.9% in all, with the types of RA simplified. With lack of Fe, Mg or Zn, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root", but the type of lateral roots evenly-distributed on primary root increases. The main type of RA is "lateral roots evenlydistributed on primary root", under the condition of N deficiency, and the types of RA turn out to be diversified. There exists a close relation between nutrient deficiency and RA changes. Owing to various forms of nutrient deficiency, correspondingly different types of RA have been produced.展开更多
Osteoporosis is a disease that decreases bone mass and increases bone porosity, weakening bones. The Paleo diet is an eating plan that imitates the dietary patterns of the Stone Age. It excludes grains, dairy, and pro...Osteoporosis is a disease that decreases bone mass and increases bone porosity, weakening bones. The Paleo diet is an eating plan that imitates the dietary patterns of the Stone Age. It excludes grains, dairy, and processed foods and emphasizes feeding on lean meats, fruits, vegetables, and nuts. Consumption of the Paleo diet has many positive sides, such as high protein intake and weight loss. Still, excluding dairy products risks calcium and vitamin D deficiencies, which are crucial for bone health. Statistics and simulations that have explored the relationship between the Paleo diet and bone health (especially for people suffering from low bone density) show mixed outcomes on bone health.). While the consumer does get lots of benefits from fruit and vegetable intake in a large sum due to them containing nutrients like magnesium, potassium, and vitamin K (which are also necessary for bone health), the lack of dairy products (gives the maximum amount of calcium and vitamin D) raises concerns about maintaining adequate bone mineral density (BMD). More information on this topic shows the negative impact of this diet on people suffering from osteoporosis due to a lack of nutrient intake that nourishes the bone. Although the Paleo diet can enhance overall health through nutrient-dense foods and reduced processed intake, it can’t be said the same for people suffering from osteoporosis.展开更多
Bariatric surgery is recognized as a highly effective therapy for obesity since it accomplishes sustained weight loss, reduction of obesity-related comorbidities and mortality, and improvement of quality of life. Over...Bariatric surgery is recognized as a highly effective therapy for obesity since it accomplishes sustained weight loss, reduction of obesity-related comorbidities and mortality, and improvement of quality of life. Overall, bariatric surgery is associated with a 42% reduction of the cardiovascular risk and 30% reduction of all-cause mortality. This review focuses on some nutritional consequences that can occur in bariatric patients that could potentially hinder the clinical benefits of this therapeutic option. All bariatric procedures, to variable degrees, alter the anatomy and physiology of the gastrointestinal tract; this alteration makes these patients more susceptible to developing nutritional complications, namely, deficiencies of macro-and micro-nutrients, which could lead to disabling diseases such as anemia, osteoporosis, protein malnutrition. Of note is the evidence that most obese patients present a number of nutritional deficits already prior to surgery, the most important being vitamin D and iron deficiencies. This finding prompts the need for a complete nutritional assessment and, eventually, an adequate correction of pre-existing deficits before surgery. Another critical issue that follows bariatric surgery is post-operative weight regain, which is commonly associated with the relapse of obesity-related comorbidities. Nu-tritional complications associated with bariatric surgery can be prevented by life-long nutritional monitoring with the administration of multivitamins and mineral supplements according to the patient's needs.展开更多
A pot experiment was conducted to investigate cadmium(Cd) uptake by different rice cultivars that produce white or dark grains. Four cultivars with white grains(hereafter, white rice) and five cultivars with dark colo...A pot experiment was conducted to investigate cadmium(Cd) uptake by different rice cultivars that produce white or dark grains. Four cultivars with white grains(hereafter, white rice) and five cultivars with dark colors (hereafter dark rice) were selected for this experiment. Three levels of soil Cd concentrations, background(0), 5 and 10 mg/kg, were used. After harvest, plant biomass, tissue concentrations of Cd, Ca, Fe, Cu and Zn were analyzed. The results showed that Cd concentrations are significantly different between different genotypes, but when comparing the Cd concentrations for the two groups, no significant difference was found. For other divalent cations, Ca concentrations in dark rice were higher than those in white ones(P<0.001 for shoots, P=0.037 for roots); Fe concentrations in dark rice were also higher than those in white ones(P=0.001 either in shoot or root); Zn concentrations in shoot of dark rice were higher than those in white ones, but no significant difference in roots. The total molar concentrations of divalent cations in dark rice were also significantly higher than in white rice. The potential benefit of higher Ca and Fe concentrations in dark rice and similar Cd concentrations in both groups is also discussed in this paper.展开更多
Tillering is an important phenological stage,which is strongly related to the yield in spike components and final grain yield during winter wheat growth.Precipitation during the fallow season(fallow precipitation)infl...Tillering is an important phenological stage,which is strongly related to the yield in spike components and final grain yield during winter wheat growth.Precipitation during the fallow season(fallow precipitation)influences tillering in winter wheat on the semi-arid Chinese Loess Plateau.However,little work has been done regarding tiller number changes under various types of fertilization and amounts of fallow precipitation on a long-term scale.Effects of fallow precipitation and fertilization on tiller were investigated in a winter wheat(Triticum aestivum L.)system in a 28-year field study(1990 to 2017)in a semiarid agro-ecosystem.Tiller number,spike number and grain yield were measured in four fertilization conditions:control without fertilizer(CK);mineral nitrogen fertilizer alone(N);mineral phosphorus fertilizer alone(P);mineral nitrogen and phosphorus fertilizer together(NP).Based on the long-term annual fallow precipitation,dry years(mean annual fallow precipitation)were distinguished.Phosphorus fertilization alone significantly increased the mean annual tiller number(23%),and the increase in tiller number was higher in wet years(29%)than in the dry years(17%).However,nitrogen fertilization alone had little effect on mean tiller number,while nitrogen and phosphorus together significantly increased mean annual tiller number(30%),mean tiller number in wet years(45%)and mean tiller number in dry years(17%).Tiller number was significantly and positively correlated with fallow precipitation in dry years for all fertilizer treatments,whereas it was weakly and either positively or negatively correlated with fallow precipitation in wet years depending on the treatment.This study found positive correlations between tiller number and fallow precipitation in the CK and NP treatments,and it found negative correlations between tiller number and fallow precipitation in the treatments with nitrogen fertilization alone or phosphorous fertilization alone in wet years.Understanding the impacts of fallow precipitation and fertilization on tiller development shed light on ways to improve crop production in rain-fed agricultural regions.展开更多
Soil and leaf nutrient analysis are widely used as effective methods of diagnosing nutrient deficiency in fruit trees,the results of which are used to properly manage fertilizer application.Therefore,a survey was cond...Soil and leaf nutrient analysis are widely used as effective methods of diagnosing nutrient deficiency in fruit trees,the results of which are used to properly manage fertilizer application.Therefore,a survey was conducted for assessment of the soil nutrient status and leaf nutrient concentration in 2 827 apple orchards in the Bohai Bay and Loess Plateau apple production regions of China.The soil organic matter,alkali hydrolyzable N,available P,and available K were 10.91 g·kg^(-1),73.21 mg·kg^(-1),70.22 mg·kg^(-1),and 169.23 mg·kg^(-1)in the Bohai Bay region,respectively,and 11.72 g·kg^(-1),56.46 mg·kg^(-1),14.91 mg·kg^(-1),and 135.78 mg·kg^(-1)in the Loess Plateau region,respectively.Soil organic matter was at a medium-to-low level in both regions,whereas the soil alkali hydrolyzable N was low.In the Bohai Bay region,soil available P was high,but soil available K was deficient.In contrast,both soil available P and K were insufficient in the Loess Plateau region.The Diagnosis and Recommendation Integrated System(DRIS)diagnostic results indicated that the most deficient elements were Ca and K in low-yielding orchards(<35 t·hm(-2))of the Bohai Bay region followed by Fe,N,and Zn;however in the Loess Plateau region,the most deficient elements were P and K followed by N,Zn,and Cu.The findings imply that the application of Ca,K,Fe,N,and Zn fertilizer should be increased in the Bohai Bay region,whereas P,K,N,Zn,and Cu fertilizer should be enhanced in the Loess Plateau region.Meanwhile,use of organic manure is recommended to improve soil quality in the two apple producing regions.展开更多
Macronutrient deficiency inhibits the growth and development of chili plants.One of the non-destructive methods that plays a role in processing plant image data based on specific characteristics is computer vision.Thi...Macronutrient deficiency inhibits the growth and development of chili plants.One of the non-destructive methods that plays a role in processing plant image data based on specific characteristics is computer vision.This study uses 5166 image data after augmentation process for six plant health conditions.But the analysis of one feature cannot represent plant health condition.Therefore,a careful combination of features is required.This study combines three types of features with HSV and RGB for color,GLCM and LBP for texture,and Hu moments and centroid distance for shapes.Each feature and its combination are trained and tested using the same MLP architecture.The combination of RGB,GLCM,Hu moments,and Distance of centroid features results the best performance.In addition,this study compares the MLP architecture used with previous studies such as SVM,Random Forest Technique,Naive Bayes,and CNN.CNN produced the best performance,followed by SVM and MLP,with accuracy reaching 97.76%,90.55%and 89.70%,respectively.Although MLP has lower accuracy than CNN,the model for identifying plant health conditions has a reasonably good success rate to be applied in a simple agricultural environment.展开更多
基金supported by the grants from the Agricultural Science and Technology Innovation Program,Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2013OCRI)the Excellent Young Scientist Fund of Chinese Academy of Agricultural Sciences(1610172015004)an open project funded by State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources,China(SKLCUSA-b201403)
文摘Nutrient deficiency stresses often occur simultaneously in soil. Thus, it's necessary to investigate the mechanisms underlying plant responses to multiple stresses through identification of some key stress-responsive genes. Quantitative real-time PCR (qRT-PCR) is essential for detecting the expression of the interested genes, of which the selection of suitable reference genes is a crucial step before qRT-PCR. To date, reliable reference genes to normalize qRT-PCR data under different nutrient deficiencies have not been reported in plants. In this study, expression of ten candidate reference genes was detected in leaves and roots of rapeseed (Brassica napus L.) after implementing different nutrient deficiencies for 14 days. These candidate genes, included two traditionally used reference genes and eight genes selected from an RNA- Seq dataset. Two software packages (GeNorm, NormFinder) were employed to evaluate candidate gene stability. Results showed that VHA-E1 was the highest-ranked gene in leaves of nutrient-deficient rapeseed, while VHA-G1 and UBC21 were most stable in nutrient-deficient roots. When rapeseed leaves and roots were combined, UBC21, HTB1, VHA-G1 and A CT7 were most stable among all samples. To evaluate the stabilities of the highest-ranked genes, the relative expression of two target genes, BnTrxl;1 and BnPhtl;3 Were further determined. The results showed that the relative expression of BnTrxl;1 depended on reference gene selection, suggesting that it's necessary to evaluate the stability of reference gene prior to qRT-PCR. This study provides suitable reference genes for gene expression analysis of rapeseed responses to different nutrient deficiencies, which is essential for elucidation of mechanisms underlying rapeseed responses to multiple nutrient deficiency stresses
基金supported by the National Natural Science Foundation of China (31970274 (J.W.), 32170272 (X.W.), 32100251 (J.Z.), 32000179 (Y.X.))the Special Research Assistant of Chinese Academy of Sciences (J.Z. and Y.X.), China Postdoctoral Science Foundation (2022M713224 (J.Z.))+6 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDPB16 (J.W.))the Yunnan Innovation Team Project (202105AE160013 (J.W.))CAS “Light of West China” Program (G.S.)Yunnan Revitalization Talent Support Program “Young Talents” Project (XDYC-QNRC-2022-0301 (J.Z.), XDYC-QNRC-2022-0001 (G.S.))the General and Key Project of the Applied Basic Research Program of Yunnan (202001AS070021(J.W.))Yunnan Fundamental Research Projects-General Project (202101AT070457 (S.L.))Yunnan Fundamental Research Projects-Youth Talent Project (202101AU070021(S.L.))
文摘Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adaptation to such nutrient stresses.In this study,we used transcriptomics and proteomics to analyze how soybean(Glycine max)and its parasitizing dodder(Cuscuta australis)respond to nitrate and phosphate deficiency(-N and-P).After-N and-P treatment,the soybean and dodder plants exhibited substantial changes of transcriptome and proteome,although soybean plants showed very few transcriptional responses to-P and dodder did not show any transcriptional changes to either-N or-P.Importantly,large-scale interplant transport of mRNAs and proteins was detected.Although the mobile mRNAs only comprised at most 0.2%of the transcriptomes,the foreign mobile proteins could reach 6.8%of the total proteins,suggesting that proteins may be the major forms of interplant communications.Furthermore,the interplant mobility of macromolecules was specifically affected by the nutrient regimes and the transport of these macromolecules was very likely independently regulated.This study provides new insight into the communication between host plants and parasites under stress conditions.
基金Supported by National Natural Science Foundation of China(31370613)National Program on Key Basic Research Project(973 Program)(2011CB403202)+1 种基金Project of General Administration of Quality Supervision,Inspection and Quarantine the People’s Republic of China(2009IK177)Fundamental Research Funds for the Central Universities(DL12CA01)~~
文摘Objective] This study aimed to investigate the effects of exogenous or-ganic acids on dehydrogenase activity in dark brown forest soils under nutrient defi-ciency. [Method] Different proportions of A1 and B horizon dark brown forest soils (A1∶B=1∶2) were utilized to establish soil conditions with nutrient deficiency for cultivation of Larix olgensis seedlings. The effects of oxalic acid, citric acid and succinic acid on dehydrogenase activity in dark brown forest soils under nutrient deficiency were studied systematical y by adding different concentrations of organic acid solutions. [Result] Under nutrient deficiency, dehydrogenase activity in dark brown forest soils was reduced significantly, and the reduction increased with the extension of stress duration. Most organic acid treatments improved dehydrogenase activity in nutrient-deficient dark brown forest soils, and the effects varied with different treatment du-ration and types and concentrations of organic acids. Furthermore, 10.0, 5.0 and 10.0 mmol/L organic acid treatments exhibited the most significant effects on day 10, 20 and 30, respectively. The increment of dehydrogenase activity in different durations showed a downward trend of 30 d〉20 d〉10 d; the improvement effects of three organic acids on dehydrogenase activity showed a downward trend of succinic acid〉 citric acid〉oxalic acid. [Conclusion] Exogenous organic acids improved signifi-cantly dehydrogenase activity in dark brown forest soils under nutrient deficiency and also improved the microbial activity and soil fertility to a certain extent.
基金National Natural Science Foundation of China(31370613)Research Program of China(973 Program)(2011CB403202)+1 种基金General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China(2009IK177)Fundamental Research Funds for the Central Universities(DL12CA01)~~
文摘Different proportions of A1 and B horizons dark brown forest soils (A1∶B=1∶2) were utilized to set the soil nutrient deficient conditions, and Larix olgensis seedlings were cultivated. By simulating organic acids concentrations in forest litter leachates of northeast China, the effects and mechanism of different concentrations of organic acid solutions on phosphorus (P) availability of dark brown forest soils and P absorption of Larix olgensis seedlings with nutrient deficiency were studied. The results showed that, compared with A1 horizon soils, available P contents of mixed soils in A1 and B horizons decreased, and P accumulation and efficiency of P uptake in root and leaves of Larix olgensis seedlings also decreased, but efficiency of P utilization increased. After treatments of exogenous organic acids, available P contents of mixed soils increased and the impact sequence of different organic acids were succinic acid 〉 citric acid 〉 oxalic acid; the concentration of 5.0 mmol/L had the best function, and the best effect of organic acids was at 20 d. Organic acids also increased P accumulation and efficiency of P uptake in roots and leaves of Larix olgensis seedlings, but decreased efficiency of P utilization. The impact strength of organic acids on P accumulation and efficiency of P uptake varied with treatment time, type and concentration of organic acids. The results of 20 d and 30 d in roots were higher than those of 10 d, however, the results of 10 d and 20 d in leaves were higher than those of 30 d, thus, at the earlier stage of organic acids treatments, more P absorbed were transferred to leaves, and at the later stage, more P would be accumulated in roots. The concentration of 10.0 mmol/L had the best function, and the impact sequence of different organic acids was succinic acid 〉 citric acid 〉 oxalic acid. Therefore, organic acids might contribute to P absorption and accumulation by Larix olgensis seedlings, final y increasing the adaptability and endurance of Larix olgensis seedlings to nutrient deficient soils.
基金supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan period (2010BAD01B05)the Earmarked Fund for China Agriculture Research System (CARS-13)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1247)the Fundamental Research Funds for the Central Universities,China (2013PY113)
文摘Direct-sowing establishment method has great significance in improving winter oilseed rape(Brassica napus L.) production and guaranteeing edible oil security in China. However, nutrient responses on direct sown winter oilseed rape(DOR) performance and population development dynamic are still not well understood. Therefore, five on-farm experiments were conducted in the reaches of the Yangtze River(RYR) to determine the effects of nitrogen(N), phosphorus(P), and potassium(K) deficiencies on population density, dry matter production, nutrient uptake, seed yield, and yield components of DOR plants. Four fertilization treatments included the balanced NPK application treatment(NPK, 180 kg N, 39.3 kg P, 100 kg K, and 1.8 kg borax ha–1) and three nutrient deficiency treatments based on the NPK treatment, i.e., –N, –P, and –K. The results indicated that DOR population density declined gradually throughout the growing season, especially at over-wintering and pod-development stages. Nutrient deficiency decreased nutrient concentration in DOR plants, limited dry matter production and nutrient uptake, and thereby exacerbated density reduction during plants growth. The poor individual growth and reduced population density together decreased seed yield in the nutrient deficiency treatment. Averaged across all the experiments, seed yield reduced 61% by N deficiency, 38.3% by P deficiency, and 14.4% by K deficiency. The negative effects of nutrient deficiency on DOR performances followed the order of –N–P–K, and the effects were various among different nutrient deficiencies. Although N deficiency improved DOR emergence, but it seriously limited dry matter production and nutrient uptake, which in turn led to substantial plants death and therefore resulted in a very low harvested density. The P deficiency significantly reduced initial density, limited plants growth, and exacerbated density reduction. The K deficiency mainly decreased individual growth and yield, but did not affect density dynamic. Our results highlighted the importance of balanced NPK application in DOR production, suggesting that management strategy of these nutrients should be comprehensively considered with an aim to build an appropriate population structure with balanced plant density and individual growth.
文摘What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore the functional mechanism of nutrient elements during the course of RA construction. The cultivation system of filter paper is utilized to research the effect of nutrient deficiency on the RA of Malus hupehensis (Pamp.) Rehd. There may be eight types of RA. In complete Hogland solution, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root". With the lack of P, K or Ca, the main type of RA is "lateral roots clustering in the upper region primary root", and the "lateral roots clustering in the upper and middle regions of primary root" types of RA decrease. But with shortage of P, the type of lateral roots clustering in the upper and lower regions of primary root increases, and the type of lateral roots clustering in the middle region of primary root decreases, with the types of RA diversified. Under the condition of K deficiency, the type of no lateral root increases and types of lateral roots clustering in the middle region of primary root decrease, and the percentage of such types as "no lateral root", "lateral roots clustering in the upper region of primary root", and "lateral roots clustering in the upper and middle regions of primary root" accounts for 97.9% in all, with the types of RA simplified. With lack of Fe, Mg or Zn, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root", but the type of lateral roots evenly-distributed on primary root increases. The main type of RA is "lateral roots evenlydistributed on primary root", under the condition of N deficiency, and the types of RA turn out to be diversified. There exists a close relation between nutrient deficiency and RA changes. Owing to various forms of nutrient deficiency, correspondingly different types of RA have been produced.
文摘Osteoporosis is a disease that decreases bone mass and increases bone porosity, weakening bones. The Paleo diet is an eating plan that imitates the dietary patterns of the Stone Age. It excludes grains, dairy, and processed foods and emphasizes feeding on lean meats, fruits, vegetables, and nuts. Consumption of the Paleo diet has many positive sides, such as high protein intake and weight loss. Still, excluding dairy products risks calcium and vitamin D deficiencies, which are crucial for bone health. Statistics and simulations that have explored the relationship between the Paleo diet and bone health (especially for people suffering from low bone density) show mixed outcomes on bone health.). While the consumer does get lots of benefits from fruit and vegetable intake in a large sum due to them containing nutrients like magnesium, potassium, and vitamin K (which are also necessary for bone health), the lack of dairy products (gives the maximum amount of calcium and vitamin D) raises concerns about maintaining adequate bone mineral density (BMD). More information on this topic shows the negative impact of this diet on people suffering from osteoporosis due to a lack of nutrient intake that nourishes the bone. Although the Paleo diet can enhance overall health through nutrient-dense foods and reduced processed intake, it can’t be said the same for people suffering from osteoporosis.
文摘Bariatric surgery is recognized as a highly effective therapy for obesity since it accomplishes sustained weight loss, reduction of obesity-related comorbidities and mortality, and improvement of quality of life. Overall, bariatric surgery is associated with a 42% reduction of the cardiovascular risk and 30% reduction of all-cause mortality. This review focuses on some nutritional consequences that can occur in bariatric patients that could potentially hinder the clinical benefits of this therapeutic option. All bariatric procedures, to variable degrees, alter the anatomy and physiology of the gastrointestinal tract; this alteration makes these patients more susceptible to developing nutritional complications, namely, deficiencies of macro-and micro-nutrients, which could lead to disabling diseases such as anemia, osteoporosis, protein malnutrition. Of note is the evidence that most obese patients present a number of nutritional deficits already prior to surgery, the most important being vitamin D and iron deficiencies. This finding prompts the need for a complete nutritional assessment and, eventually, an adequate correction of pre-existing deficits before surgery. Another critical issue that follows bariatric surgery is post-operative weight regain, which is commonly associated with the relapse of obesity-related comorbidities. Nu-tritional complications associated with bariatric surgery can be prevented by life-long nutritional monitoring with the administration of multivitamins and mineral supplements according to the patient's needs.
文摘A pot experiment was conducted to investigate cadmium(Cd) uptake by different rice cultivars that produce white or dark grains. Four cultivars with white grains(hereafter, white rice) and five cultivars with dark colors (hereafter dark rice) were selected for this experiment. Three levels of soil Cd concentrations, background(0), 5 and 10 mg/kg, were used. After harvest, plant biomass, tissue concentrations of Cd, Ca, Fe, Cu and Zn were analyzed. The results showed that Cd concentrations are significantly different between different genotypes, but when comparing the Cd concentrations for the two groups, no significant difference was found. For other divalent cations, Ca concentrations in dark rice were higher than those in white ones(P<0.001 for shoots, P=0.037 for roots); Fe concentrations in dark rice were also higher than those in white ones(P=0.001 either in shoot or root); Zn concentrations in shoot of dark rice were higher than those in white ones, but no significant difference in roots. The total molar concentrations of divalent cations in dark rice were also significantly higher than in white rice. The potential benefit of higher Ca and Fe concentrations in dark rice and similar Cd concentrations in both groups is also discussed in this paper.
基金funded by the National Key Research and Development Program of China(2016YFD0800105)the China Postdoctoral Science Foundation(2018M643755)。
文摘Tillering is an important phenological stage,which is strongly related to the yield in spike components and final grain yield during winter wheat growth.Precipitation during the fallow season(fallow precipitation)influences tillering in winter wheat on the semi-arid Chinese Loess Plateau.However,little work has been done regarding tiller number changes under various types of fertilization and amounts of fallow precipitation on a long-term scale.Effects of fallow precipitation and fertilization on tiller were investigated in a winter wheat(Triticum aestivum L.)system in a 28-year field study(1990 to 2017)in a semiarid agro-ecosystem.Tiller number,spike number and grain yield were measured in four fertilization conditions:control without fertilizer(CK);mineral nitrogen fertilizer alone(N);mineral phosphorus fertilizer alone(P);mineral nitrogen and phosphorus fertilizer together(NP).Based on the long-term annual fallow precipitation,dry years(mean annual fallow precipitation)were distinguished.Phosphorus fertilization alone significantly increased the mean annual tiller number(23%),and the increase in tiller number was higher in wet years(29%)than in the dry years(17%).However,nitrogen fertilization alone had little effect on mean tiller number,while nitrogen and phosphorus together significantly increased mean annual tiller number(30%),mean tiller number in wet years(45%)and mean tiller number in dry years(17%).Tiller number was significantly and positively correlated with fallow precipitation in dry years for all fertilizer treatments,whereas it was weakly and either positively or negatively correlated with fallow precipitation in wet years depending on the treatment.This study found positive correlations between tiller number and fallow precipitation in the CK and NP treatments,and it found negative correlations between tiller number and fallow precipitation in the treatments with nitrogen fertilization alone or phosphorous fertilization alone in wet years.Understanding the impacts of fallow precipitation and fertilization on tiller development shed light on ways to improve crop production in rain-fed agricultural regions.
基金supported by the National Key Research and Development Program of China(2017YFD0200200/08)the National Natural Science Foundation of China(31501713)+1 种基金the Natural Science Foundation of Shandong Province(ZR2015PC001)the Modern Agro-industry Technology Research System(CARS-27)
文摘Soil and leaf nutrient analysis are widely used as effective methods of diagnosing nutrient deficiency in fruit trees,the results of which are used to properly manage fertilizer application.Therefore,a survey was conducted for assessment of the soil nutrient status and leaf nutrient concentration in 2 827 apple orchards in the Bohai Bay and Loess Plateau apple production regions of China.The soil organic matter,alkali hydrolyzable N,available P,and available K were 10.91 g·kg^(-1),73.21 mg·kg^(-1),70.22 mg·kg^(-1),and 169.23 mg·kg^(-1)in the Bohai Bay region,respectively,and 11.72 g·kg^(-1),56.46 mg·kg^(-1),14.91 mg·kg^(-1),and 135.78 mg·kg^(-1)in the Loess Plateau region,respectively.Soil organic matter was at a medium-to-low level in both regions,whereas the soil alkali hydrolyzable N was low.In the Bohai Bay region,soil available P was high,but soil available K was deficient.In contrast,both soil available P and K were insufficient in the Loess Plateau region.The Diagnosis and Recommendation Integrated System(DRIS)diagnostic results indicated that the most deficient elements were Ca and K in low-yielding orchards(<35 t·hm(-2))of the Bohai Bay region followed by Fe,N,and Zn;however in the Loess Plateau region,the most deficient elements were P and K followed by N,Zn,and Cu.The findings imply that the application of Ca,K,Fe,N,and Zn fertilizer should be increased in the Bohai Bay region,whereas P,K,N,Zn,and Cu fertilizer should be enhanced in the Loess Plateau region.Meanwhile,use of organic manure is recommended to improve soil quality in the two apple producing regions.
基金funded by the Directorate of Research and Community Service,Deputy for Strengthening Research and Development,Ministry of Research,Technology/National Research and Innovation Agency of the Republic of Indonesia in the PMDSU program with grant ID 018/E5/PG.02.00.PT/2022 and 1773/UN1/DITLIT/Dit-Lit/PT.01.03/2022.
文摘Macronutrient deficiency inhibits the growth and development of chili plants.One of the non-destructive methods that plays a role in processing plant image data based on specific characteristics is computer vision.This study uses 5166 image data after augmentation process for six plant health conditions.But the analysis of one feature cannot represent plant health condition.Therefore,a careful combination of features is required.This study combines three types of features with HSV and RGB for color,GLCM and LBP for texture,and Hu moments and centroid distance for shapes.Each feature and its combination are trained and tested using the same MLP architecture.The combination of RGB,GLCM,Hu moments,and Distance of centroid features results the best performance.In addition,this study compares the MLP architecture used with previous studies such as SVM,Random Forest Technique,Naive Bayes,and CNN.CNN produced the best performance,followed by SVM and MLP,with accuracy reaching 97.76%,90.55%and 89.70%,respectively.Although MLP has lower accuracy than CNN,the model for identifying plant health conditions has a reasonably good success rate to be applied in a simple agricultural environment.