期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
COMPARATIVE ANALYSES ON THE LITTER IN KOREAN PINE MONGOLIAN SCOTS PINE AND DAHURIAN LARCH PLANTATIONS(Ⅱ)CONTENT AND RETURNING AMOUNT OF NUTRIENT ELEMENTS
1
作者 王克 张羽 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1995年第1期12-17,共6页
Comparative analyses were conducted on the nutrient element content and returning amount of main fractional compositions of litter in Korean pine (KP), Mongolian Scots pine(MSP) and Dahurian larch (DL) plantations in ... Comparative analyses were conducted on the nutrient element content and returning amount of main fractional compositions of litter in Korean pine (KP), Mongolian Scots pine(MSP) and Dahurian larch (DL) plantations in Laoshan Plantation Experiment Station of Maoershan Experiment Forest Farm of Northeast Forestry University. The results are as follows: (1) The nutrient element content and returning amount in litter varies among different fractional compositions and tree species, the total returning amount of all nutrient elements and the returning amount of K, Ca, Mg, N and P are DL>MSP>KP, the returning amount of Cu is DL>KP>MSP, the returning amount of Fe and Mn are MSP>DL>KP, (2) To KP and DL plantations, the main nutrient element returned is dead needles; dead branches, bark scales and dead cones account for a little proportion; whereas to MSP plantation, besides dead needles,dead branches and bark scales also play an important role in the return of nutrient elements; (3)A little deal of dead leaves can provided a great deal of returning amount of nutrient elements. 展开更多
关键词 Korean pine Mongolian Scots pine Dahurian larch PLANTATION Litter nutrient elements Returning amount
下载PDF
Transport patterns of micro nutrient elements from the continental shelf of the East China Sea to the Kuroshio area
2
作者 Lu Saiying, Yao Qiao’er and Chen Zhen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第2期219-230,共12页
On the basis of the in situ data of DO2, pH, SiO2. PO4-P, NO3-N and NO2-N collected in the north of the East China Sea during 1987-1988, the following points are mainly expounded.1.The inorgonic nutrients are obviousl... On the basis of the in situ data of DO2, pH, SiO2. PO4-P, NO3-N and NO2-N collected in the north of the East China Sea during 1987-1988, the following points are mainly expounded.1.The inorgonic nutrients are obviously affected by continent runoff in the north of the East China Sea. Their distributions are characteristic of its distribution of terrigenous materials.2.There are three transport paths of nutrients from the shelf to the Kuroshio area. The first is mixing-diffusing-advec-tion and upwelling process, the process of biology and biochemistry belongs to the second, and the sinking process is the last one.3.The swing of the Kuroshio axis affectes both the range of the migration of substances through mixing-diffusing-advec-tion process and the upwelling degree of the subsurface Kuroshio water to the shelf.4.Most part of the substances sink as macroparticles to the deep layer before reaching the Kuroshio area. 展开更多
关键词 Transport patterns of micro nutrient elements from the continental shelf of the East China Sea to the Kuroshio area
下载PDF
Variations of nutrient elements and its effect on ecological environment off the Changjiang estuarine waters 被引量:2
3
作者 Lin Yi’ an, Tang Renyou, Pan Jianming, Jin Mingming ( Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2001年第2期197-208,共11页
On the basis of the date obtained in two cruises during October 1997 and May 1998, the concentration distribution and the variation of present species of nutrient elements in the water masses are described. The trans... On the basis of the date obtained in two cruises during October 1997 and May 1998, the concentration distribution and the variation of present species of nutrient elements in the water masses are described. The transform mechanism of present species of nutrients and the of differrnt water masses, frontal area and thermohaline transition layer on convergence or divergence and the biogeochemical cycle of nutrient elements off the Changjiang Estuary are studied. Meanwhile, the environmental capaci- ty of nutrients is primarily estimated: they are 1.803 x 104t DIN and 6.18 x 102t PO43- -P in autumn, and 4.20x 102t PO43- -P in spring. 展开更多
关键词 nutrient element biogeochemical cycle ecological environmental effect the Changjiang Estuary
下载PDF
Study on the Changes of the Major Nutrient Elements During Simple Composting Process of Dry Chicken Manure 被引量:2
4
作者 Jintao XU Longfei LI +4 位作者 Lijuan GAO Yong GUO Hai'e ZHANG Minghui JI Baofeng HAO 《Agricultural Biotechnology》 CAS 2020年第6期95-98,103,共5页
[Objectives]This study was conducted to provide a theoretical basis for production and application of chicken manure compost.[Methods]With dry manure as a material,the variations of the major nutrients during simple c... [Objectives]This study was conducted to provide a theoretical basis for production and application of chicken manure compost.[Methods]With dry manure as a material,the variations of the major nutrients during simple composting process of dry chicken manure were studied,in order to get the best fermentation method.[Results]Chicken manure should not be preserved wet,but should be preserved after air-drying and fermented before use.Necessary moisture,simple sealing treatment and a certain amount of N element were conducive to simple fermentation of chicken manure.The treatments in which the chicken manure was wrapped around and compacted,added with an appropriate amount of water(50%-60%)and naturally fermented,or was wrapped around and compacted and added with an appropriate amount of water(50%-60%)and 0.2%of urea,were more appropriate for the production directly.[Conclusions]This study provides a theoretical basis for the actual production and application of chicken manure compost. 展开更多
关键词 Chicken manure Simple composting process nutrient element Changing relationship
下载PDF
Soil Nutrient Elements of Trampling Disturbance Kobresia humilis Communities along the Highway in Na’qu, Tibet
5
作者 ZHANG Jinhua LI Chenqiong +2 位作者 YAN Yan ZHONG Li QIN Taoying 《Wuhan University Journal of Natural Sciences》 CAS 2009年第2期174-178,共5页
The change of soil nutrient elements during restoration succession processes of high mountain meadow in Na'qu County, Tibet, was investigated. The results showed that with the trampling disturbance, the normal struct... The change of soil nutrient elements during restoration succession processes of high mountain meadow in Na'qu County, Tibet, was investigated. The results showed that with the trampling disturbance, the normal structure of soil is violated, soil quality worsened, leading to soil erosion and nutrient loss. The recoverage of soil is lagged behind vegetation when change depends on elements of soil nutrient increase in mass. The content of total nitrogen, total phosphorus and total potassium changed accordingly with total nutrient, and is remarkably correlated to the content of organic matter. The content of available phosphorus is complex and changes with biomass and soil pH. The content of available potassium change was different from that of total nitrogen, total phosphorus and total potassium, and was increasing with trampiing, and the change was relatively little during successive stages. 展开更多
关键词 degenerated meadow recoverage succession soil nutrient elements
原文传递
Biomass and Nutrient Accumulation Characteristics of Young Stands of Alnus cremastogyne
6
作者 Anmin MIN Yong WANG +5 位作者 Xingliang LIU Yu WANG Li WANG Hongxia LI Xiaohu CAI Yongming AN 《Agricultural Biotechnology》 CAS 2018年第1期50-54,共5页
To investigate plant biomass and nutrient distribution and accumulation in organs of Alnus cremastogyne at different ages from 1 to 4 years, the biomass, N, P, K, Ca, Mg, Fe and Zn were tested. The results showed that... To investigate plant biomass and nutrient distribution and accumulation in organs of Alnus cremastogyne at different ages from 1 to 4 years, the biomass, N, P, K, Ca, Mg, Fe and Zn were tested. The results showed that the average biomass of the whole tree and the biomass of leaf, branch, stem, and root were in positive correlation with tree age, but the growth rate of biomass had a decreasing trend with the tree age increasing, and only the biomass proportion of the trunk in the whole individual plant showed an increasing trend with age. The contents of nutrient elements in organs showed an order of N 〉 Ca 〉 K 〉 Mg 〉 P 〉 Fe 〉 Zn ; and the contents of N, P and K were higher in the leaf than in other organs, and the contents of Ca, Mg and Fe in the root were higher than in other organs. The accumulations of N, P, K, Ca, Mg and Zn were the highest in the trunk, and that of Fe was the highest in the root. The annual net accumulations of N, P, K, Ca and Mg in the average trees from 1 to 4 years old were 17.07, 40.79, 95.82 and 106.71 g, respectively, and the annual net accumulations of microelements (Fe and Zn) were 335.04, 577.26, 1267 and 1525.27 mg, respectively. 展开更多
关键词 Alnus cremastogyne Forest stands at different ages Demands for nutrient elements BIOMASS nutrient elements
下载PDF
Effects of Biostimulant NEAU10 on Growth of Rice Seedlings and Soil Physicochemical Parameters
7
作者 Ding Wei Pang Yingjie Cheng Zhuo 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期13-23,共11页
The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and... The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption. 展开更多
关键词 biostimulant rice seedling growth indicator soil enzyme activity nutrient element
下载PDF
Morphological Characteristics and Nutrient Content of Fine Roots of 2-Year-Old and 3-Year-Old Eucalyptus grandis Plantation
8
作者 Xiaoyu DUAN Xianwei LI +2 位作者 Liuling ZHOU Weishuang WANG Hui CHEN 《Agricultural Biotechnology》 CAS 2012年第6期9-14,共6页
[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine... [ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as experimental materials, to determine the root diameter (D), root length (L), specific root length (SRL) and contents of major nutrient elements N, P, K, Ca, Mg and C of fine roots (level 1 -5), study the morphological characteristics and major nutrient element content and investigate the correlation. [ Result] The results showed that morphological differences of fine roots ( level 1 - 5 ) of Eucalyptus grandis plantation were great with the increase of root order, to be specific, D and L increased and SRL decreased with the increasing root order; SRL, L and D of 3-year-old Eucalyptus grauclis plantation were greater than those of 2-year-old Euca/yptus grand/s plantation. Contents of N, Ca, Mg and C of fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation showed consistent orders with the increase of root order: N and Mg contents were reduced, while Ca and C contents were enhanced; P and K contents varied with different forest ages; both 2-year-old and 3-year- old Eucalyptus grandis showed an order of C 〉 K 〉 Ca (Mg) 〉 N. Major nutrient element content and morphological characteristics of Eucalyptus grand/s fine roots (level 1 -5 ) were extremely significantly correlated (P 〈0.01 ), SRL, L and D could be adopted as reference indices to evaluate nutrient status of Eucalyptus grand/s. Required nutrients and fine root morphology of Eucalyptus grandis plantation changed with the increase of forest age, and the nutrient cycling and energy flow patterns also changed; major nutrient dements in fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation transferred in a different order from the growth order, therefore N fertilizer could be applied to improve the growth of fine roots. [ Condusion] This study laid the foundation for understanding the fine root morphology and nutrient variation pattern of Eucalyptus grandis plantation and enriching the response and adaptation mechanism theory of roots to environment, pos- sessing important reference significance for the sustainable development of Eucalyptus grand/s plantation. 展开更多
关键词 Eucalyptus grandis Fine root Root order nutrient elements Morphological characteristics
下载PDF
Determination of Nutrient Contents in the Leaf Litter of <i>Diospyros crassiflora</i>S. (Hiern-FWTA) Plantation in Okwuta-Ibeku, Umuahia, Abia State, Nigeria
9
作者 Bruno Iniobong Nsien Eric Etim Offiong +1 位作者 Pretty Henry Dan Esther Ewongoabasi Eric 《Open Journal of Forestry》 2022年第1期162-176,共15页
Determination of nutrient contents in <i>Diospyros crassiflora</i> leaf litter was <span>carried out in the Forestry Research Institute of Nigeria (FRIN), Okwuta-Ibeku,</span> Umuahia, Abia Sta... Determination of nutrient contents in <i>Diospyros crassiflora</i> leaf litter was <span>carried out in the Forestry Research Institute of Nigeria (FRIN), Okwuta-Ibeku,</span> Umuahia, Abia State, Nigeria in 2016 and 2017. Three 1<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m </span></span></span><span><span><span style="font-family:;" "="">×<span> 1</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m trays were randomly positioned for collection of leaf litter production from 4/5</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">years old <i>Diospyros crassiflora</i> species in each block (10</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m </span></span></span><span><span><span style="font-family:;" "="">×<span> 25</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m) within the plantation totaling 1.5</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha. A Randomised Complete Block Design (RCBD) with three replicates was used to study the mean monthly leaf litterfall of <i>Diospyros crassiflora</i>. Leaf litter was collected from each of the three litter trays per block and placed in paper bags every 28<sup>th</sup> day of each month from January-December in 2016 and in 2017. Fifteen grammes (15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">g) of properly mixed and oven-dried samples of <i>D. crassiflora</i> leaf litter were milled and sieved in 1</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">mm sieve;0.3</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">g was used to determine nutrient elements and their concentrations. The data obtained from mineral nutrient contents of <i>D. crassiflora</i> leaf litter was analysed using analysis of variance. Result reveals the mean concentrations of nitrogen</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(1.41 and 1.41 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), phosphorus (0.18 and 0.18 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), potassium</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(0.68 and 0.68 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), sodium (0.35 and 0.30 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), calcium</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(1.57 and 1.56 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), magnesium</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(0.32 and 0.31 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), chlorine (0.25 and 0.24 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), Organic carbon (0.03</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">and 0.03 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>) and Organic matter</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(1.17 and 1.18 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>) etc. in <i>D. crassiflora</i> leaf litter in January-December (2016 and 2017). The study shows almost uniform distribution of mineral elements concentrations in 2016 and 2017.</span></span></span> 展开更多
关键词 Diospyros crassiflora PLANTATION Leaf Litter nutrient elements Concentrations
下载PDF
Study on the Response of Soil Nutrient Content to Soil Loss in Karst Sloping Land of Southwest China
10
作者 YUAN Hong HU Ning +3 位作者 HUANG Yun-xiang ZHANG Yang-zhu HE xun-yang XIE Hong-xia 《Meteorological and Environmental Research》 2012年第3期46-48,52,共4页
[ Objective] The study aimed to analyze the response of soil nutrient content to soil loss in karst sloping land of Southwest China. [Method] Choosing a karst sloping land in Nanchuan, Chongqing City as a sampling are... [ Objective] The study aimed to analyze the response of soil nutrient content to soil loss in karst sloping land of Southwest China. [Method] Choosing a karst sloping land in Nanchuan, Chongqing City as a sampling area, we analyzed the basic physical and chemical properties of soils at different sampling points, as well as the movement of Mg, Cu, Zn, Mg, Mo and Mn in the soils. [ Result] In the sloping land, there was a var- ying decrease in the content of all soil nutrients from the top to the bottom, but there was no obvious deposit at the bottom. In addition, Mg, Cu, Zn, Mg, Mo and Mn content had clear inflections in the sloping land, and these inflections mainly appeared at 15 -25 m. It proved that both surface soil erosion and underground soil leaching occurred at the same time in the karst sloping land. [Conclusion] The research could provide scientific references for the restoration of ecosystem in karst mountainous areas. 展开更多
关键词 Karst sloping land nutrient elements Soil erosion China
下载PDF
Effect of Plant Roots on Soil Nutrient Distributions in Shanghai Urban Landscapes
11
作者 Jing Liang Hailan Fang Guanjun Hao 《American Journal of Plant Sciences》 2016年第2期296-305,共10页
Twenty-seven surface soil samples were collected from four landscape sites in Shanghai, and seven soil profile samples were gathered from the two older sites for evaluation of horizontal and vertical distribution of s... Twenty-seven surface soil samples were collected from four landscape sites in Shanghai, and seven soil profile samples were gathered from the two older sites for evaluation of horizontal and vertical distribution of soil properties to reveal their relationship with plant roots. Results indicated that urban soil had significant heterogeneities. Soil total nitrogen was significantly correlated with organic matter and total potassium was more abundant than total phosphorus. The available contents of iron, manganese, zinc and copper were higher than the standards for plant growth established by Soltanpour. pH and electrical conductivity increased with increasing soil vertical depth, possibly due to leaching, while the nutrients limiting plant growth such as nitrogen, phosphorus, potassium, iron, copper and zinc had more shallow distributions due to absorption by plant roots. However, with the increasing of soil depth, contents of magnesium, sodium, sulfur and chloride increased due to leaching and bio-cycling, which was further shown by the correlation analysis. 展开更多
关键词 SOIL nutrient Element DISTRIBUTION LEACHING Bio-Cycling
下载PDF
Impact of vegetation succession on leaf-litter-soil C:N:P stoichiometry and their intrinsic relationship in the Ziwuling Area of China’s Loess Plateau 被引量:8
12
作者 Zongfei Wang Fenli Zheng 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期697-711,共15页
Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with su... Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear.These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests.The results show that natural succession had significant effects on carbon(C),nitrogen(N)and phosphorous(P)concentrations in leaf-litter-soil and their ratios in severely eroded areas.Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages.Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages.Litter P concentration decreased in the early successional stages and increased during late successional stages,with no overall significant change.Soil C and N concentrations and C:N,C:P and N:P ratios increased with successional stages.Soil C and N concentrations decreased with the increasing soil depth.Both were significantly different between any successional stages and controls(cropland)in the upper 10 cm and 10–20 cm soil layers.Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N,during the shrub stage,by P,and during the forest stages,by both of N and P.In addition,there were close correlations between litter and leaf C:N:P ratios,soil and litter C and N levels,and C:P and N:P ratios.These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility,and provide insights into C:N:P relationships of leaf,litter and soil influenced by vegetation succession stage. 展开更多
关键词 Ecological stoichiometry Leaf-litter-soil Loess Platea Natural succession nutrient elements
下载PDF
Research on Potential Fertilization of Coal Gangue in the Weibei Coalfield,China 被引量:7
13
作者 WANG Tong WANG Ying WANG Jun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期717-721,共5页
Based on the systematic analysis of the coal gangue in Weibei Coalfield, such as petrologic characteristics, chemical composition, nutrient elements, deleterious elements, and the transformation, and compared with the... Based on the systematic analysis of the coal gangue in Weibei Coalfield, such as petrologic characteristics, chemical composition, nutrient elements, deleterious elements, and the transformation, and compared with the soil element content background values of Loess Plateau and national harmful materials controlling standards, we conclude that the coal gangue in the Weibei Coalfield has huge potential to be used as clay fertilizer. 展开更多
关键词 coal gangue nutrient elements deleterious elements Weibei Coalfield
下载PDF
田林老山中山两类森林凋落物研究 被引量:28
14
作者 梁宏温 《生态学杂志》 CAS CSCD 北大核心 1994年第1期21-26,共6页
田林老山中山两类森林凋落物研究梁宏温(广西农学院林学分院,南宁530001)StudiesontheLitterfallofTwoForestTypcsinMid—AltitudeofLaoshanMountaini... 田林老山中山两类森林凋落物研究梁宏温(广西农学院林学分院,南宁530001)StudiesontheLitterfallofTwoForestTypcsinMid—AltitudeofLaoshanMountaininTianlinCounty.¥L... 展开更多
关键词 evergreen and deciduous broadleaved mixed forest.Chinese fir plantation litterfall nutrient element return decompositon rate.
下载PDF
Effects of Different Seed Stem Sizes on the Changes of Available Elements in Rhizosphere Soil of Fritillaria thunbergii Miq.
15
作者 Yong PENG Rui PAN +3 位作者 Zhengyan LIU Xiaohong WU Nong ZHOU Wenwu YANG 《Agricultural Biotechnology》 2024年第3期18-23,共6页
[Objectives]This study was conducted to screen suitable seed stems of Fritillaria thunbergii Miq.from different provenances and to provide a theoretical basis for the high-yielding and high-efficiency cultivation of F... [Objectives]This study was conducted to screen suitable seed stems of Fritillaria thunbergii Miq.from different provenances and to provide a theoretical basis for the high-yielding and high-efficiency cultivation of F.thunbergii Miq.introduced to different places.[Methods]F.thunbergii Miq.from four different provenances including Zhejiang,Nantong and Chongqing were introduced and cultivated in Wanzhou of Chongqing.The contents of available Zn,Fe,Mn,Cu,Mo,N,P,K,Ca and Mg in rhizosphere soil of F.thunbergii Miq.during five growing stages were determined after selecting different stem sizes for field cultivation.[Results]Small stems of Pan an and Ningbo provenances(SSG3,121-160/kg)and middle stems of Nantong and Fengjie provenances(SSG2,81-120/kg)showed higher soil availability.[Conclusions]In the process of introduction and cultivation of F.thunbergii Miq.,high yield and high efficiency can be achieved by selecting smaller seed stems of F.thunbergii Miq. 展开更多
关键词 Fritillaria thunbergii Miq. Different provenances Stem size Introduction Cultivation Soil nutrient element Availability
下载PDF
Carbon, nitrogen and phosphorus stoichiometry in Japanese anchovy (Engraulis japonicus) from the Huanghai Sea, China 被引量:1
16
作者 HUANG Liang WU Ying +1 位作者 WAN Ruijing ZHANG Jing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第4期154-160,共7页
Generally, nutrient cycle is closely related to the element distribution in biomass and the popula- tion dynamics in ecosystems. Carbon, nitrogen and phosphorus in Japanese anchovy (Engraulis japonicus) of different... Generally, nutrient cycle is closely related to the element distribution in biomass and the popula- tion dynamics in ecosystems. Carbon, nitrogen and phosphorus in Japanese anchovy (Engraulis japonicus) of different body lengths from the Huanghai Sea (Yellow Sea) were determined to better understand their variability and reasons during its life history. The mean content was 45.12%, 10.12% and 2.02% for C, N and P, respectively. Significant differences in C, N and P elemental composition were found among different sizes, which could be explained by varying proportions of storage compounds in whole body fish, and varying degrees of ossification. Considering abun- dant resources in Japanese anchovy, it was an important P-pool in the cycle of P. Moreover, the excreted N/P ratio was significantly different in fishes of different sizes, especially at high gross growth efficiency. In the past two decades, overexploitation tended to cause smaller body length in the community structure of anchovy, which presumably changed the nutrient cycle in food webs of the Huanghai Sea. Exptrapolation of the results indicates that Japanese anchovy may be important for conveying nutrient in the Huanghai Sea. 展开更多
关键词 Japanese anchovy (Engraulis japonicus) nutrient elements the Huanghai Sea
下载PDF
Promoting sustainable agriculture development by improving the efficiency of chemical fertilizers and soil nutritions
17
作者 Li Jiyun Liu Xiudi +5 位作者 Zhou Wei Sun Jianhua Tong Yiping Liu Wenjie(Research Center for Eco- Environmental Sciences, Chinese Acadernv of Sciences)Li Zhensheng Wang Peitian Yao Shujing(Institute of Genetics, Chinese Acadernv of Sciences) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1995年第3期297-303,共7页
PromotingsustainableagriculturedevelopmentbyimprovingtheefficiencyofchemicalfertilizersandsoilnutritionsLiJi... PromotingsustainableagriculturedevelopmentbyimprovingtheefficiencyofchemicalfertilizersandsoilnutritionsLiJiyun;LiuXiudi;Zhou... 展开更多
关键词 nutrient elements efficiency untilization root secretion organic acid.
下载PDF
Emission control for precursors causing acid rain(V): Improvement of acid soil with the bio-briquette combustion ash 被引量:1
18
作者 DONGXu-hui SAKAMOTOKazuhiko +2 位作者 WANGWei GAOShi-dong ISOBEYugo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期705-711,共7页
The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the ... The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0—10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%—8% of the bio-briquette combustion ash to the tested soil. 展开更多
关键词 bio-briquette combustion ash soil improvement ANC heavy metal element nutrient element
下载PDF
Functions of Nitrogen,Phosphorus and Potassium in Energy Status and Their Influences on Rice Growth and Development 被引量:1
19
作者 MA Jiaying CHEN Tingting +8 位作者 LIN Jie FU Weimeng FENG Baohua LI Guangyan LI Hubo LI Juncai WU Zhihai TAO Longxing FU Guanfu 《Rice science》 SCIE CSCD 2022年第2期166-178,共13页
Nitrogen(N),phosphorus(P)and potassium(K)are important essential nutrients for plant growth and development,but their functions in energy status remains unclear.Here,we grew Nipponbare rice seedlings in a growth chamb... Nitrogen(N),phosphorus(P)and potassium(K)are important essential nutrients for plant growth and development,but their functions in energy status remains unclear.Here,we grew Nipponbare rice seedlings in a growth chamber for 20 d at 30℃/24℃day/night)under natural sunlight conditions with different nutrient regimes.The results showed that N had the strongest influence on the plant growth and development,followed by P and K.The highest nonstructural carbohydrate content,dry matter weight,net photosynthetic rate(Pn),ATP content,as well as NADH dehydrogenase,cytochrome oxidase and ATPase activities were found in the plants that received sufficient N,P and K.The lowest values of these parameters were detected in the N-deficient plants.Higher dry matter accumulation was observed in the K-deficient than in the P-deficient treatments,but there was no significant difference in the ratio of respiration rate to Pn between these two treatments,suggesting that differences in energy production efficiency may have accounted for this result.This hypothesis was confirmed by higher ATP contents and activities of NADH dehydrogenase,cytochrome oxidase and ATPase in the K-deficient plants than in the P-deficient plants.We therefore inferred different abilities in energy production efficiency among N,P and K in rice seedlings,which determined rice plant growth and development. 展开更多
关键词 RICE nutrient element PHOTOSYNTHESIS RESPIRATION plant growth and development energy production efficiency
下载PDF
REGIONAL GEOCHEMISTRY OF RUBBER PLANTATION IN HAINAN ISLAND,CHINA
20
作者 Wang Jinghua 《Journal of Geographical Sciences》 SCIE CSCD 1990年第2期79-87,共9页
Hainan Island is located in the northern periphery of the tropical world.The environment is suitable for a number of tropical economic crops.The content of soil organic matter under rubber plantation is around 10- 20 ... Hainan Island is located in the northern periphery of the tropical world.The environment is suitable for a number of tropical economic crops.The content of soil organic matter under rubber plantation is around 10- 20 g kg-1.Cu,Zn,Mn,As,Mg,Ca and K in the soil profile reflect the parent material and the intensive weathering and leaching in the area.Copper has noticeably accumulated in the lower horizon,whereas the concentrations of Ca,Mg and K.in rubber trees are 0.5- 4.9,2.2- 4.3 and 4.6-10.2 g kg-1respectively.These three elements are mostly distributed in the plant roots and are particularly required during the development of new leaves early in the season. 展开更多
关键词 rubber plantation nutrient element tropical soil tropical vegetation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部