The main goal of this study was to evaluate the performance of AnnAGNPS(Annualized AGricultural NonPoint Source)pollution model,in calculating runoff,sediment loading and nutrient loadings for Funiu Mountain area.Most...The main goal of this study was to evaluate the performance of AnnAGNPS(Annualized AGricultural NonPoint Source)pollution model,in calculating runoff,sediment loading and nutrient loadings for Funiu Mountain area.Most of the model input parameters were sourced from Luanchuan Forest Ecology Station(LFES)in Funiu Mountain area.The data on 23 storms in 2018 was used to calibrate the model and the data on 33 storms in 2019 for validation.The whole evaluation consisted of determining the coefficient of determination(R^(2)),Nash-Sutcliffe coefficient of efficiency(E),and the percentage volume error(VE).Results showed that the runoff volumes were underpredicted by 5.0%with R^(2) of 0.93(P<0.05)during calibration and underpredicted by 5.3%with R^(2) of 0.90(P<0.05)during validation.But sediment loading was able to produce a moderate result.The model underpredicted the daily sediment loading by 15.1%with R^(2) of 0.63(P<0.05)during calibration and 13.5%with R^(2) of 0.66(P<0.05)during validation.Nitrogen loading was overpredicted by 20.3%with R^(2)=0.68(P<0.05),and phosphorus loading performance was slightly poor with R^(2)=0.65(P<0.05)during validation.In general,the model performed well in simulating runoff compared to sediment loading and nutrient loadings.展开更多
Currently,lakes and artificial reservoirs are increasingly threatened by eutrophication,which is the result of the combined action of many natural and anthropogenic factors.In the past,the effect of nutrient load on t...Currently,lakes and artificial reservoirs are increasingly threatened by eutrophication,which is the result of the combined action of many natural and anthropogenic factors.In the past,the effect of nutrient load on the trophic state of water bodies has attracted much attention,while few studies have addressed the effect of hydrological characteristics.Therefore,to reveal the coupling effects of hydrological characteristics and nutrient load in sediments on the trophic state of water bodies,this study collected relevant data from 36 lakes and reservoirs across China.Pearson correlation analysis showed that trophic level index was positively and significantly correlated with nutrient load in sediments and hydraulic retention time,while it was negatively correlated with mean depth and hydraulic load.The principal component analysis showed that the nutrient load was the first major component that influenced the trophic state of water bodies,followed by the mean depth and hydraulic retention time.Eutrophication was prone to occur in water bodies with mean depth less than 7 m and hydraulic retention time greater than 14 d,and the trophic level index regression equation with hydrological characteristics and nutrient load in sediments was derived by multiple regression analysis.This study revealed that the trophic state of water bodies influenced by both nutrient load and hydrological characteristics.It provides a new idea to reduce the occurrence of eutrophication in reservoirs by using the artificial hydrological regulation capacity of reservoirs.展开更多
The objective of this paper is to implement "Soil and Water Assessment Tool (SWAT)" model to assess the possible impact of land-use changes on nutrient yields from Song Cau watershed located in Northern Viet Nam. ...The objective of this paper is to implement "Soil and Water Assessment Tool (SWAT)" model to assess the possible impact of land-use changes on nutrient yields from Song Cau watershed located in Northern Viet Nam. Organic nitrogen (N) as well as phosphorus (P) output due to nonpoint source erosion was estimated through SWAT. Parameters governing the mechanics of streamflow discharge, sediment yield, nitrogen, and phosphorus output in SWAT were calibrated in a distributed fashion. A five-year period of record for nutrient was used for model calibration, while a four-year period was used for model validation. Comparing measured versus simulated average monthly total N, and P loads for the calibration and validation periods; respectively, we found that SWAT model performed reasonably well for Song Cau watershed. Simulation results showed that monthly Nash-Sutcliffe coefficient of Efficiency (NSE) ranged from 0.65 to 0.83, observation's standard deviation ratio (RSR) and percent bias (PBIAS) ranged from 0.41 to 0.58 and -36.12 to 2.78, respectively. Additionally, SWAT simulation results also showed that land-use changes caused significant percentage of changes in sediment yield, total N, and P loads within Song Cau watershed.展开更多
Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) ...Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) by field samplings in Baiyangdian Lake, the largest shallow lake of northern China. The field samplings were conducted in two sites of different nutrient loadings during the whole growth period of reeds, and three types of zones with different water depths were chosen for each site, including the terrestrial zone with water level below the ground, the ecotone zone with the water level varying from belowground to aboveground, and the submerged zone with water level above the ground. The result showed that reed growth was more limited by water level variation than nutrient loadings. The average stem lengths and diameters in terrestrial zones were about 26.3%-27.5% and 7.2%-12.0% higher than those in submerged zones, respectively. Similarly, the terrestrial status increased the aboveground biomass of reeds by 36.6%-51.8% compared with the submerged status. Both the nutrient concentrations and storages in the aboveground reeds were mainly influenced by the nutrient loadings in surface water and sediment rather than the water level variation of the reed growth environment, and the nutrient storages reached their maxima in late August or early September. It was observed that the maximum nitrogen storage occurred in the terrestrial zone with higher nutrient loadings, with the value of 74.5 g/m2. This study suggested that water level variation and nutrient loadings should be considered when using reeds to control and remediate eutrophication of shallow lakes.展开更多
A simple estimation model of groundwater discharge and nutrient flux from nearshore unconfined aquifer to lake was studied. It was supposed that the aquifer was permeable isotropic homogeneously and its thickness appr...A simple estimation model of groundwater discharge and nutrient flux from nearshore unconfined aquifer to lake was studied. It was supposed that the aquifer was permeable isotropic homogeneously and its thickness approximated to the depth of lake. Distribution of the hydraulic gradient and the specific discharge along the transect of the discharge zone were discussed. Results show that the groundwater discharge patterns vary with the inclination angle of lakeshore bottom. For a shallow lake with gentle slope bottom, the rate of discharge of groundwater to lake is not constant across a discharge zone, but the discharge is concentrated in a narrow portion of the littoral zone where the Dupuit assumptions are invalid. The width of the discharge zone is correlative with aquifer thickness and slope of the lake bottom. The distribution functions of hydraulic gradient and groundwater discharge rates accord exponentially with offshore distance.展开更多
This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 cre...This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 creeks) through nutrient concentrations and discharge measurements. Using Fick's law, internal loads were estimated in the reservoir from fluxes across sediment-water interface from nutrient concentration gradients between the pore water and the water. The Ibirit6 creek (urban sewage recipient) contributes with 72%-47% of ammonium (NH4^+) and 100%-8% of SRP (soluble reactive phosphorus) of the total quantity entering the reservoir, whereas the Pintados creek (oil refinery effluent recipient) contributions are 20%-19% and 44%-100%, respectively. Despite the high external loads (130 and 2.2 ton-yr^-1 of NH4+ and SRP, respectively), internal loads (average flux of 120 and 2 mg·cm^-2yr^-1, respectively) correspond to 25% of the total external loads which may sustain a high productivity in the reservoir for a long time even if the external loads are controlled. The stocks of ammonium and SRP of the interstitial water (100 cm of sediment) would be released to the water in six years and five months, respectively, The release time would be extremely larger (〉 3,000 years) considering the stocks of total N and bioavailable P.展开更多
While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are r...While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are related to eutrophication and to understand why particular species proliferate under specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not changing in stoichiometric proportion to the "Redfield ratio", and why this has important consequences for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also describe some of the physiological mechanisms of different species to take up nutrients and to thrive under conditions of nutrient imbalance.展开更多
Eutrophication in coastal area has become more and more serious and mariculture potential is a main cause.Although there are some quantitative research on nutrient loads in national and global perspective,the calculat...Eutrophication in coastal area has become more and more serious and mariculture potential is a main cause.Although there are some quantitative research on nutrient loads in national and global perspective,the calculation method problems make the results controversial.In this paper,the farming activities are divided into fed culture types(include cage culture and pond culture)and extractive culture types(e.g.seaweed,filter-feeding shellfish culture).Based on the annual yield of China in 2019 and feed coefficient of fed culture types and carbon(C),nitrogen(N),and phosphorus(P)content of extractive culture types,the annual nutrient loads was estimated.The results showed that to coastal region of China(1)annual nutrient released by fed culture types were about58451 t of N,9081 t of P,and annual nutrient removed by harvest of extractive culture types were 109245 t of N,11980 t of P and 1.86×10^(6)t of C.Overall,the net amount of nutrient removed annually by mariculture industry were 50794 t of N and 2901 t of P.(2)The nutrient released from mariculture industry influenced nutrient stoichiometry.Pond farming and seaweed farming had the potential of increasing the molar concentration ratio of N and P(N:P),while cage farming and bivalve farming decreased the N:P.(3)Due to different mariculture types and layouts in the coastal regions in China,N and P loading were regional different.Among the coastal regions in China,net release of nutrient from mariculture occurred only in Hainan and Guangxi regions,while in the other regions,N and P were completely removed by harvest.We suggest decrease the amount of fed culture types and increase the amount of integrated culture with extractive culture types.This study will help to adjust mariculture structure and layout at the national level to reduce the environmental impact.展开更多
Slow growth rate restricts the development and growth of seedlings due to nutrients deficiency or nutrient imbalance.Exponential fertilization can enhance the internal nutrient reserves in seedlings at the nursery-sta...Slow growth rate restricts the development and growth of seedlings due to nutrients deficiency or nutrient imbalance.Exponential fertilization can enhance the internal nutrient reserves in seedlings at the nursery-stage and strengthen their resistance to adverse conditions.In this study,nitrogen requirements for producing Hydrangea macrophylla‘Hanatemari’that robust seedlings,nutrient dynamics,biomass and growth,was examined utilizing exponential fertilization.The potted seedlings were fertilized with urea under exponential regime at rates of 0.5,1.5 and 2.0 g nitrogen/plant(EF1,EF2,and EF3),respectively.In addition,an unfertilized group treated with equal volume of deionized water was used as control.The results showed that seedlings under 1.5 g N/plant(EF2)had the highest plant growth index and total biomass.The nutrient concentrations of different organs varied in different fertilization treatments.Based on the results of current study,it is concluded that 1.5 g N/plant(EF2)is suitable exponential fertilization treatment for the culture of hydrangea seedlings.Our treatments results showed that 2.0 g N/plant is not suitable for seedling culturing,because of serious nutrient toxicity.These findings will help to improve seedling quality and strengthen the production of H.macrophylla for plantation.展开更多
Non-point source pollution (NPS) of water resources has become a major problem in recent years due to more human interactions and disturbances to natural landscapes. The problem can have more impacts in sub-humid subt...Non-point source pollution (NPS) of water resources has become a major problem in recent years due to more human interactions and disturbances to natural landscapes. The problem can have more impacts in sub-humid subtropical regions where high intensity monsoon rains have greater effects on hydrologic proc-esses and thus the assessment of those effects is necessitated for strategic water resources and environmental management. Since spatial and temporal changes of NPS pollutants are difficult to assess on a watershed scale, the assessment can be done effectively using a suitable water quantity-quality model coupled with GIS and remote sensing that incorporates spatial variations. The objective of this study was to assess the N and P loads from a small mixed type watershed comprising different land use land covers with the aid of Soil and Water Assessment Tool (SWAT)-a hydrologic-water quality model. The model was calibrated for runoff and sediment transport and then simulation of associated N and P loads as NPS pollution was done and compared with measured values at the outlet of the watershed which is part of the DVC Command, Hazaribagh, India. The calibrated SWAT model was used to estimate the water soluble NO3-N, NH4-N, P, organic N and or-ganic P loads being transported as pollutants by runoff and percolated water. The estimates of these pollut-ants provided information on the extent of NPS pollution of water downstream. The results of the study re-veal that the NPS pollutant load in runoff varies with seasonal rainfall patterns and ranges from 2.57 to 4.52 kg/ha in case of NO3-N which accounts for a maximum load of 7661.40 kg of NO3-N in surface runoff from the watershed under study. The total loss of N from the watershed accounts for as high as 8.84 kg/ha, whereas the P load is 0.02 kg/ha. These losses can be as high as 14984.14 kg of total N and 50.85 kg of total P when estimated as NPS pollutants from the watershed. The study is therefore important to get an estimate of the extent of these pollutants and develop measures for mitigating the losses as nutrient as well as pollu-tion of water resources.展开更多
Measurement of the nutrient concentrations in the stream is usually done on weekly, biweekly or monthly basis due to limited resources. There is need to estimate concentration and loads during the period when no data ...Measurement of the nutrient concentrations in the stream is usually done on weekly, biweekly or monthly basis due to limited resources. There is need to estimate concentration and loads during the period when no data is available. The objectives of this study were to test the performance of a suite of regression models in predicting continuous water quality loading data and to determine systematic biases in the prediction. This study used the LOADEST model which includes several predefined regression models that specify the model form and complexity. Water quality data primarily nitrogen and phosphorus from five monitoring stations in the Neuse River Basin in North Carolina, USA were used in the development and analyses of rating curves. We found that LOADEST performed generally well in predicting loads and observation trends with general tendency/bias towards overestimation. Estimated Total Nitrogen (TN) varied from observation (“true” load) by -1% to 9%, but for the Total Phosphorus (TP) it ranged from -2% to 27%. Statistical evaluation using R2, Nash-Sutcliff Efficiency (NSE) and Partial Load Factor (PLF) showed a strong correlation in prediction.展开更多
The carbon dioxide flux through the air-water interface of coastal freshwater ecosystems must be quantified to understand the regional balances of carbon and its transport through coastal and estuarine regions. The va...The carbon dioxide flux through the air-water interface of coastal freshwater ecosystems must be quantified to understand the regional balances of carbon and its transport through coastal and estuarine regions. The variations in air-sea CO2 fluxes in nearshore ecosystems can be caused by the variable influence of rivers. In the present study, the amount of carbon emitted from a tropical coastal river was estimated using climatological and biogeochemical measurements (2002-2010) obtained from the basin of the Capibaribe River, which is located in the most populous and industrialized area of the northeast region of Brazil. The results showed a mean CO2 flux of +225 mmol·m-2·d-1, mainly from organic material from the untreated domestic and industrial wastewaters that are released into the river. This organic material increased the dissolved CO2 concentration in the river waters, leading to a partial pressure of CO2 inthe aquatic environment that reached 31,000 μatm. The months of April, February and December (the dry period) showed the largest monthly means for the variables associated with the carbonate system (, DIC, CO2(aq), CO32-, TA, temperature and pH). This status reflects the state of permanent pollution in the basin of the Capibaribe River, due, in particular, to the discharge of untreated domestic wastewater, which results in the continuous mineralization of organic material. This mineralization significantly increases the dissolved CO2 content in the estuarine and coastal waters, which is later released to the atmosphere.展开更多
选择闽江河口鳝鱼滩西北部的纯芦苇湿地为研究对象,基于野外氮负荷增强分解试验,探讨了氮负荷增强对芦苇残体分解及其养分释放的影响。试验设置了4个氮负荷水平,即NL0(无氮负荷处理,0 g N m^(-2)a^(-1))、NL1(低氮负荷处理,12.5 g N m^(...选择闽江河口鳝鱼滩西北部的纯芦苇湿地为研究对象,基于野外氮负荷增强分解试验,探讨了氮负荷增强对芦苇残体分解及其养分释放的影响。试验设置了4个氮负荷水平,即NL0(无氮负荷处理,0 g N m^(-2)a^(-1))、NL1(低氮负荷处理,12.5 g N m^(-2)a^(-1))、NL2(中氮负荷处理,25.0 g N m^(-2)a^(-1))和NL3(高氮负荷处理,75.0 g N m^(-2)a^(-1))。结果表明,不同氮负荷处理下残体的分解速率整体表现为NL2(0.00284 d^(-1))>NL1(0.00263 d^(-1))>NL0(0.00257 d^(-1))>NL3(0.00250 d^(-1)),低氮和中氮负荷总体促进了残体分解,而高氮负荷抑制了残体分解,原因主要与不同处理下残体分解过程中基质质量及pH的明显改变有关。不同氮负荷处理下,残体中的全碳(TC)含量在分解期间均呈不同波动变化特征;全氮(TN)和全磷(TP)含量均在分解初期(0-30 d)骤然降低,之后则呈不同波动变化,其中TN含量呈波动上升变化,而TP含量呈小幅波动变化。残留率是影响不同氮负荷处理下残体分解期间碳(C)、氮(N)和磷(P)净释放的共性因素,而氮负荷增强导致的残体基质质量(C/N、C/P、N/P)和主要环境因子(pH、电导率(EC))改变影响了其释放强度。研究发现,在氮负荷增强背景下残体养分的累积与释放发生了明显改变,闽江河口氮负荷水平的增加整体将抑制芦苇残体中C、N养分的释放,但其在分解中后期(90-240 d)可能对P养分释放具有较为明显的促进作用。展开更多
基金the National Natural Science Foundation of China(32271848).
文摘The main goal of this study was to evaluate the performance of AnnAGNPS(Annualized AGricultural NonPoint Source)pollution model,in calculating runoff,sediment loading and nutrient loadings for Funiu Mountain area.Most of the model input parameters were sourced from Luanchuan Forest Ecology Station(LFES)in Funiu Mountain area.The data on 23 storms in 2018 was used to calibrate the model and the data on 33 storms in 2019 for validation.The whole evaluation consisted of determining the coefficient of determination(R^(2)),Nash-Sutcliffe coefficient of efficiency(E),and the percentage volume error(VE).Results showed that the runoff volumes were underpredicted by 5.0%with R^(2) of 0.93(P<0.05)during calibration and underpredicted by 5.3%with R^(2) of 0.90(P<0.05)during validation.But sediment loading was able to produce a moderate result.The model underpredicted the daily sediment loading by 15.1%with R^(2) of 0.63(P<0.05)during calibration and 13.5%with R^(2) of 0.66(P<0.05)during validation.Nitrogen loading was overpredicted by 20.3%with R^(2)=0.68(P<0.05),and phosphorus loading performance was slightly poor with R^(2)=0.65(P<0.05)during validation.In general,the model performed well in simulating runoff compared to sediment loading and nutrient loadings.
基金funded by the Shanghai Science and Technology Development Foundation (19010500100)the National Key Research and Development Program of China (No.2016YFA0601003)。
文摘Currently,lakes and artificial reservoirs are increasingly threatened by eutrophication,which is the result of the combined action of many natural and anthropogenic factors.In the past,the effect of nutrient load on the trophic state of water bodies has attracted much attention,while few studies have addressed the effect of hydrological characteristics.Therefore,to reveal the coupling effects of hydrological characteristics and nutrient load in sediments on the trophic state of water bodies,this study collected relevant data from 36 lakes and reservoirs across China.Pearson correlation analysis showed that trophic level index was positively and significantly correlated with nutrient load in sediments and hydraulic retention time,while it was negatively correlated with mean depth and hydraulic load.The principal component analysis showed that the nutrient load was the first major component that influenced the trophic state of water bodies,followed by the mean depth and hydraulic retention time.Eutrophication was prone to occur in water bodies with mean depth less than 7 m and hydraulic retention time greater than 14 d,and the trophic level index regression equation with hydrological characteristics and nutrient load in sediments was derived by multiple regression analysis.This study revealed that the trophic state of water bodies influenced by both nutrient load and hydrological characteristics.It provides a new idea to reduce the occurrence of eutrophication in reservoirs by using the artificial hydrological regulation capacity of reservoirs.
文摘The objective of this paper is to implement "Soil and Water Assessment Tool (SWAT)" model to assess the possible impact of land-use changes on nutrient yields from Song Cau watershed located in Northern Viet Nam. Organic nitrogen (N) as well as phosphorus (P) output due to nonpoint source erosion was estimated through SWAT. Parameters governing the mechanics of streamflow discharge, sediment yield, nitrogen, and phosphorus output in SWAT were calibrated in a distributed fashion. A five-year period of record for nutrient was used for model calibration, while a four-year period was used for model validation. Comparing measured versus simulated average monthly total N, and P loads for the calibration and validation periods; respectively, we found that SWAT model performed reasonably well for Song Cau watershed. Simulation results showed that monthly Nash-Sutcliffe coefficient of Efficiency (NSE) ranged from 0.65 to 0.83, observation's standard deviation ratio (RSR) and percent bias (PBIAS) ranged from 0.41 to 0.58 and -36.12 to 2.78, respectively. Additionally, SWAT simulation results also showed that land-use changes caused significant percentage of changes in sediment yield, total N, and P loads within Song Cau watershed.
基金supported by the Major State Basic Research Development Program (No.2010CB951104)the Program for New Century Excellent Talents in University (No. NCET-09-0233)the National Water Pollution Control and Treatment Project in China (No.2008ZX07209-009)
文摘Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) by field samplings in Baiyangdian Lake, the largest shallow lake of northern China. The field samplings were conducted in two sites of different nutrient loadings during the whole growth period of reeds, and three types of zones with different water depths were chosen for each site, including the terrestrial zone with water level below the ground, the ecotone zone with the water level varying from belowground to aboveground, and the submerged zone with water level above the ground. The result showed that reed growth was more limited by water level variation than nutrient loadings. The average stem lengths and diameters in terrestrial zones were about 26.3%-27.5% and 7.2%-12.0% higher than those in submerged zones, respectively. Similarly, the terrestrial status increased the aboveground biomass of reeds by 36.6%-51.8% compared with the submerged status. Both the nutrient concentrations and storages in the aboveground reeds were mainly influenced by the nutrient loadings in surface water and sediment rather than the water level variation of the reed growth environment, and the nutrient storages reached their maxima in late August or early September. It was observed that the maximum nitrogen storage occurred in the terrestrial zone with higher nutrient loadings, with the value of 74.5 g/m2. This study suggested that water level variation and nutrient loadings should be considered when using reeds to control and remediate eutrophication of shallow lakes.
基金Project supported by the National Basic Research Program of China (Grant No. 2002CB412303) the Graduate Innovation Project of Jiangsu Province, China.
文摘A simple estimation model of groundwater discharge and nutrient flux from nearshore unconfined aquifer to lake was studied. It was supposed that the aquifer was permeable isotropic homogeneously and its thickness approximated to the depth of lake. Distribution of the hydraulic gradient and the specific discharge along the transect of the discharge zone were discussed. Results show that the groundwater discharge patterns vary with the inclination angle of lakeshore bottom. For a shallow lake with gentle slope bottom, the rate of discharge of groundwater to lake is not constant across a discharge zone, but the discharge is concentrated in a narrow portion of the littoral zone where the Dupuit assumptions are invalid. The width of the discharge zone is correlative with aquifer thickness and slope of the lake bottom. The distribution functions of hydraulic gradient and groundwater discharge rates accord exponentially with offshore distance.
文摘This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 creeks) through nutrient concentrations and discharge measurements. Using Fick's law, internal loads were estimated in the reservoir from fluxes across sediment-water interface from nutrient concentration gradients between the pore water and the water. The Ibirit6 creek (urban sewage recipient) contributes with 72%-47% of ammonium (NH4^+) and 100%-8% of SRP (soluble reactive phosphorus) of the total quantity entering the reservoir, whereas the Pintados creek (oil refinery effluent recipient) contributions are 20%-19% and 44%-100%, respectively. Despite the high external loads (130 and 2.2 ton-yr^-1 of NH4+ and SRP, respectively), internal loads (average flux of 120 and 2 mg·cm^-2yr^-1, respectively) correspond to 25% of the total external loads which may sustain a high productivity in the reservoir for a long time even if the external loads are controlled. The stocks of ammonium and SRP of the interstitial water (100 cm of sediment) would be released to the water in six years and five months, respectively, The release time would be extremely larger (〉 3,000 years) considering the stocks of total N and bioavailable P.
文摘While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are related to eutrophication and to understand why particular species proliferate under specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not changing in stoichiometric proportion to the "Redfield ratio", and why this has important consequences for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also describe some of the physiological mechanisms of different species to take up nutrients and to thrive under conditions of nutrient imbalance.
基金The National Key R&D Program of China under contract No.2020YFA0607603the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA23050402+1 种基金the National Natural Science Foundation of China under contract Nos 41776155 and U1906216the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018SDKJ0501-3。
文摘Eutrophication in coastal area has become more and more serious and mariculture potential is a main cause.Although there are some quantitative research on nutrient loads in national and global perspective,the calculation method problems make the results controversial.In this paper,the farming activities are divided into fed culture types(include cage culture and pond culture)and extractive culture types(e.g.seaweed,filter-feeding shellfish culture).Based on the annual yield of China in 2019 and feed coefficient of fed culture types and carbon(C),nitrogen(N),and phosphorus(P)content of extractive culture types,the annual nutrient loads was estimated.The results showed that to coastal region of China(1)annual nutrient released by fed culture types were about58451 t of N,9081 t of P,and annual nutrient removed by harvest of extractive culture types were 109245 t of N,11980 t of P and 1.86×10^(6)t of C.Overall,the net amount of nutrient removed annually by mariculture industry were 50794 t of N and 2901 t of P.(2)The nutrient released from mariculture industry influenced nutrient stoichiometry.Pond farming and seaweed farming had the potential of increasing the molar concentration ratio of N and P(N:P),while cage farming and bivalve farming decreased the N:P.(3)Due to different mariculture types and layouts in the coastal regions in China,N and P loading were regional different.Among the coastal regions in China,net release of nutrient from mariculture occurred only in Hainan and Guangxi regions,while in the other regions,N and P were completely removed by harvest.We suggest decrease the amount of fed culture types and increase the amount of integrated culture with extractive culture types.This study will help to adjust mariculture structure and layout at the national level to reduce the environmental impact.
基金This research is supported by Science and Technology Research Project of Shanghai Greening and City Appearance Administration in 2019(G192402).
文摘Slow growth rate restricts the development and growth of seedlings due to nutrients deficiency or nutrient imbalance.Exponential fertilization can enhance the internal nutrient reserves in seedlings at the nursery-stage and strengthen their resistance to adverse conditions.In this study,nitrogen requirements for producing Hydrangea macrophylla‘Hanatemari’that robust seedlings,nutrient dynamics,biomass and growth,was examined utilizing exponential fertilization.The potted seedlings were fertilized with urea under exponential regime at rates of 0.5,1.5 and 2.0 g nitrogen/plant(EF1,EF2,and EF3),respectively.In addition,an unfertilized group treated with equal volume of deionized water was used as control.The results showed that seedlings under 1.5 g N/plant(EF2)had the highest plant growth index and total biomass.The nutrient concentrations of different organs varied in different fertilization treatments.Based on the results of current study,it is concluded that 1.5 g N/plant(EF2)is suitable exponential fertilization treatment for the culture of hydrangea seedlings.Our treatments results showed that 2.0 g N/plant is not suitable for seedling culturing,because of serious nutrient toxicity.These findings will help to improve seedling quality and strengthen the production of H.macrophylla for plantation.
文摘Non-point source pollution (NPS) of water resources has become a major problem in recent years due to more human interactions and disturbances to natural landscapes. The problem can have more impacts in sub-humid subtropical regions where high intensity monsoon rains have greater effects on hydrologic proc-esses and thus the assessment of those effects is necessitated for strategic water resources and environmental management. Since spatial and temporal changes of NPS pollutants are difficult to assess on a watershed scale, the assessment can be done effectively using a suitable water quantity-quality model coupled with GIS and remote sensing that incorporates spatial variations. The objective of this study was to assess the N and P loads from a small mixed type watershed comprising different land use land covers with the aid of Soil and Water Assessment Tool (SWAT)-a hydrologic-water quality model. The model was calibrated for runoff and sediment transport and then simulation of associated N and P loads as NPS pollution was done and compared with measured values at the outlet of the watershed which is part of the DVC Command, Hazaribagh, India. The calibrated SWAT model was used to estimate the water soluble NO3-N, NH4-N, P, organic N and or-ganic P loads being transported as pollutants by runoff and percolated water. The estimates of these pollut-ants provided information on the extent of NPS pollution of water downstream. The results of the study re-veal that the NPS pollutant load in runoff varies with seasonal rainfall patterns and ranges from 2.57 to 4.52 kg/ha in case of NO3-N which accounts for a maximum load of 7661.40 kg of NO3-N in surface runoff from the watershed under study. The total loss of N from the watershed accounts for as high as 8.84 kg/ha, whereas the P load is 0.02 kg/ha. These losses can be as high as 14984.14 kg of total N and 50.85 kg of total P when estimated as NPS pollutants from the watershed. The study is therefore important to get an estimate of the extent of these pollutants and develop measures for mitigating the losses as nutrient as well as pollu-tion of water resources.
文摘Measurement of the nutrient concentrations in the stream is usually done on weekly, biweekly or monthly basis due to limited resources. There is need to estimate concentration and loads during the period when no data is available. The objectives of this study were to test the performance of a suite of regression models in predicting continuous water quality loading data and to determine systematic biases in the prediction. This study used the LOADEST model which includes several predefined regression models that specify the model form and complexity. Water quality data primarily nitrogen and phosphorus from five monitoring stations in the Neuse River Basin in North Carolina, USA were used in the development and analyses of rating curves. We found that LOADEST performed generally well in predicting loads and observation trends with general tendency/bias towards overestimation. Estimated Total Nitrogen (TN) varied from observation (“true” load) by -1% to 9%, but for the Total Phosphorus (TP) it ranged from -2% to 27%. Statistical evaluation using R2, Nash-Sutcliff Efficiency (NSE) and Partial Load Factor (PLF) showed a strong correlation in prediction.
文摘The carbon dioxide flux through the air-water interface of coastal freshwater ecosystems must be quantified to understand the regional balances of carbon and its transport through coastal and estuarine regions. The variations in air-sea CO2 fluxes in nearshore ecosystems can be caused by the variable influence of rivers. In the present study, the amount of carbon emitted from a tropical coastal river was estimated using climatological and biogeochemical measurements (2002-2010) obtained from the basin of the Capibaribe River, which is located in the most populous and industrialized area of the northeast region of Brazil. The results showed a mean CO2 flux of +225 mmol·m-2·d-1, mainly from organic material from the untreated domestic and industrial wastewaters that are released into the river. This organic material increased the dissolved CO2 concentration in the river waters, leading to a partial pressure of CO2 inthe aquatic environment that reached 31,000 μatm. The months of April, February and December (the dry period) showed the largest monthly means for the variables associated with the carbonate system (, DIC, CO2(aq), CO32-, TA, temperature and pH). This status reflects the state of permanent pollution in the basin of the Capibaribe River, due, in particular, to the discharge of untreated domestic wastewater, which results in the continuous mineralization of organic material. This mineralization significantly increases the dissolved CO2 content in the estuarine and coastal waters, which is later released to the atmosphere.
文摘选择闽江河口鳝鱼滩西北部的纯芦苇湿地为研究对象,基于野外氮负荷增强分解试验,探讨了氮负荷增强对芦苇残体分解及其养分释放的影响。试验设置了4个氮负荷水平,即NL0(无氮负荷处理,0 g N m^(-2)a^(-1))、NL1(低氮负荷处理,12.5 g N m^(-2)a^(-1))、NL2(中氮负荷处理,25.0 g N m^(-2)a^(-1))和NL3(高氮负荷处理,75.0 g N m^(-2)a^(-1))。结果表明,不同氮负荷处理下残体的分解速率整体表现为NL2(0.00284 d^(-1))>NL1(0.00263 d^(-1))>NL0(0.00257 d^(-1))>NL3(0.00250 d^(-1)),低氮和中氮负荷总体促进了残体分解,而高氮负荷抑制了残体分解,原因主要与不同处理下残体分解过程中基质质量及pH的明显改变有关。不同氮负荷处理下,残体中的全碳(TC)含量在分解期间均呈不同波动变化特征;全氮(TN)和全磷(TP)含量均在分解初期(0-30 d)骤然降低,之后则呈不同波动变化,其中TN含量呈波动上升变化,而TP含量呈小幅波动变化。残留率是影响不同氮负荷处理下残体分解期间碳(C)、氮(N)和磷(P)净释放的共性因素,而氮负荷增强导致的残体基质质量(C/N、C/P、N/P)和主要环境因子(pH、电导率(EC))改变影响了其释放强度。研究发现,在氮负荷增强背景下残体养分的累积与释放发生了明显改变,闽江河口氮负荷水平的增加整体将抑制芦苇残体中C、N养分的释放,但其在分解中后期(90-240 d)可能对P养分释放具有较为明显的促进作用。