Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th...Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.展开更多
The yield and nitrogen use efficiency(NUE)of hybrid rice combinations are closely related to restorer line.Therefore,it is essential to evaluate the agronomic characteristics of restorer lines with high yield and high...The yield and nitrogen use efficiency(NUE)of hybrid rice combinations are closely related to restorer line.Therefore,it is essential to evaluate the agronomic characteristics of restorer lines with high yield and high NUE(HYHN).However,it is unclear which restorer lines are HYHN,and neither have the common agronomic traits of the HYHN restorer lines been identified.Aiming to address this issue,we conducted two filed experiments using three nitrogen applications,which screened five HYHN restorer lines from 15 indica restorer lines.Yield,NUE and nutrient transportation of restorer lines with different yields and NUE types were examined.Yield and total nitrogen absorption in aboveground biomass(TNA)increased,whereas NUE for grain production decreased with increasing nitrogen application levels.The HYHN restorer lines had large spikelets and high weight per panicle that were significantly positively correlated with yield and NUE.Therefore,large sink potential may be beneficial for both yield and NUE.We further studied the differences in nutrient transportation to panicles between the HYHN and low yield and low NUE(LYLN)restorer lines and found that the former had a higher nitrogen absorption level and dry matter weight ratios of panicle in maturity.Moreover,the HYHN lines also had a higher root and neck-panicle node bleeding intensity per stem after heading and more developed vascular bundles of neck-panicle nodes and leaves than the LYLN lines,which could contribute to the transportation of nutrients from root to ground and from stem and leaf to spike.Therefore,the advantages of large sink potential of the HYHN restorer lines include large nutrient accumulation in and distribution to the panicles and smooth flow of nutrients along the transportation channels.展开更多
Background: Studies have shown clear differences between dairy breeds in their feed intake and production efficiencies. The duodenum is critical in the coordination of digestion and absorption of nutrients. This stud...Background: Studies have shown clear differences between dairy breeds in their feed intake and production efficiencies. The duodenum is critical in the coordination of digestion and absorption of nutrients. This study examined gene transcript abundance of important classes of nutrient transporters in the duodenum of non lactating dairy cows of different feed efficiency potential, namely Holstein-Friesian (HF), Jersey (JE) and their F1 hybrid. Duodenal epithelial tissue was collected at slaughter and stored at -80℃. Total RNA was extracted from tissue and reverse transcribed to generate cDNA. Gene expression of the following transporters, namely nucleoside amino acid; sugar; mineral; and lipid transporters was measured using quantitative real-time RT-PCR. Data were statistically analysed using mixed models ANOVA in SAS. Orthogonal contrasts were used to test for potential heterotic effects and spearman correlation coefficients calculated to determine potential associations amongst gen, expression values and production efficiency variables. Results: While there were no direct effects of genotype on expression values for any of the genes examined, there was evidence for a heterotic effect (P 〈 0.05) on ABCGS, in the form of increased expression in the F1 genotype compared to either of the two parent breeds. Additionally, a tendency for increased expression of the amino acid transporters, SLC3A1 (P= 0.072), SLC3A2 (P= 0.081) and SLC6A 14 (P= 0.072) was also evident in the F1 genotype. A negative (P 〈 0.05) association was identified between the expression of the glucose transporter gene SLCSA1 and total lactational milk solids yield, corrected for body weight. Positive correlations (P 〈 0.05) were also observed between the expression values of genes involved in common transporter roles. Conclusion: This study suggests that differences in the expression of sterol and amino acid transporters in the duodenum could contribute towards the documented differences in feed efficiency between HF, JE and their F1 hybrid. Furthermore, positive associations between the expression of genes involved in common transporter roles suggest that these may be co-regulated. The study identifies potential candidates for investigation of genetic variants regulating nutrient transport and absorption in the duodenum in dairy cows, which may be incorporated into future breeding programmes.展开更多
Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distr...Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distribution and transport of nutrients along the channel were poorly understood.Based on a time-series dataset as well as mass balance and material flow analysis methods,the water and nutrient transport fluxes in the Middle Route of the South-to-North Water Diversion Project were identified in this study.The results indicate that the nutrient concentrations varied considerably with time,but there was no significant difference among the 30 stations of the main channel.Seasonal temperature difference was the major factor in the large fluctuations of water quality indicators over time.The nutrient loadings varied with the water volume outputs from the main channel to the waterreceiving cities.Atmospheric deposition was an important source of nutrients in the main channel,accounting for 9.13%,20.6%,and 0.635%of the nitrogen,phosphorus,and sulfur input from the Danjiangkou Reservoir,respectively.In 2021,a net accumulation of 988 tons of N,29 tons of P,and 2,540 tons of S,respectively,were present in the main channel.The increase of these external and internal nutrient loadings would cause water quality fluctuation and deterioration in some local sections of the main channel.Our study quantified the spatial and temporal patterns of nutrient transport in the Middle Route and revealed the ecological effects on the aquatic environment,assisting authorities on the project to develop effective water conservation strategies.展开更多
The objective of this study was to investigate the relationship between gene expression of nutrient(amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeon...The objective of this study was to investigate the relationship between gene expression of nutrient(amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons(Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions(temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day(E) 9, 11, 13, 15 and day of hatch(DOH). The eggs, embryos(without yolk sac), and organs(head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The m RNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction(RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The m RNA abundances of b^0,+AT, EAAT3, y^+LAT2, Pep T1, LAT4, NHE2, and NHE3 increased linearly with age, whereas m RNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b^0,+AT, EAAT3, Pep T1, LAT4, NHE2, NHE3, and y^+LAT2 had positive correlations with body weight(0.71〈correlation coefficient(CC)〈0.82, P〈0.0001), while CAT1, CAT2, EAAT2, SNAT1, and SNAT2 had negative correlations with body weight(-0.86〈CC〈-0.64, P〈0.0001). The gene expressions of b^0,+AT, EAAT3, LAT4, Pep T1, NHE2, NHE3, and y^+LAT2 showed positive correlations with intestinal weight(0.80〈CC〈0.91, P〈0.0001), while CAT1, CAT2, and EAAT2 showed negative correlations with intestinal weight(-0.84〈CC〈-0.67, P〈0.0001). It was concluded that the differences between growth trajectories of organs and gene expression of nutrient transporters in small intestine were due to their functional and physiological properties, which provided a comprehensive study of amino acid and peptide transporter m RNA in the small intestine during embryonic growth of pigeons.展开更多
A trophic state increase relates to surface water bodies nutrient enrichment,due to the chemical products used such as fertilizers in agriculture and residues from cattle raising activities.This research consists of n...A trophic state increase relates to surface water bodies nutrient enrichment,due to the chemical products used such as fertilizers in agriculture and residues from cattle raising activities.This research consists of nutrient transport numerical modeling to analyze the Betancíreservoir trophic state in Colombia;Water samples were collected to analyze total nitrogen,total phosphorus,ammonia,nitrates,nitrites,phosphates,chlorophyll-a,dissolved oxygen,BOD,COD,suspended solids,and water trans-parency.The water quality model MOHID Studio was implemented and after its calibration,scenarios of increase and decrease of nutrients and inflows to the reservoir through its main tributaries were simulated to reproduce the agricultural activity changes in the basin and the effects that would have on the reservoir's trophic state dynamics;Therefore,the Carlson Trophic Status Index was calculated for each case.The results show that variations in total nitrogen concentration and increased inflows present short-term consequences on the reservoir's trophic state.Increasing the incoming total nitrogen con-centrations by 100%causes the reservoir to change from a light eutrophic to a hypereutrophic state.The results of this research provide a starting tool to water resources integrated management in reservoirs.展开更多
The nutrients from the East China Sea(ECS) through the Tsushima/Korea Strait(TS) strongly impact the eco system of the Japan Sea(JS).The complex origins of the Tsushima Warm Current and the various nutrient sources in...The nutrients from the East China Sea(ECS) through the Tsushima/Korea Strait(TS) strongly impact the eco system of the Japan Sea(JS).The complex origins of the Tsushima Warm Current and the various nutrient sources in the ECS result in complex spatial-temporal variations in nutrients in the TS.Using a physical-biological model with a tracking technique,we studied the effects of nutrient sources from the ECS on the TS.Among all the nutrient sources,the Kuroshio has the highest nutrient concentrations in the TS.Its maximum concentration occurs at the bottom,while those of rivers and atmospheric depo sition occur at the surface,and that of the Taiwan Strait occurs in the middle layer.The nutrient transport through the TS exhibits similar seasonal variations,as does the volume transport.The transport of nutrients from the Kuroshio accounts for more than 85% of the total.The transport of nutrients from the Taiwan Strait is greater during autumn and winter.The transport of dissolved inorganic nitrogen(DIN) from both rivers and atmospheric deposition through the TS peak in August.Nutrient transport cannot be equated with volume transport.The DIN in the less saline zone originates not only from rivers but also from atmospheric deposition and the Kuroshio.The transport of nutrients from the Taiwan Strait is not as significant as its volume transport in the TS.展开更多
Nutrients transported from catchments are one of the most important sources for lake eutrophication. In this study, the Honghu Lake Basin, located at the middle reaches of the Yangtze River, was chosen as the study ar...Nutrients transported from catchments are one of the most important sources for lake eutrophication. In this study, the Honghu Lake Basin, located at the middle reaches of the Yangtze River, was chosen as the study area, and the watershed hydrological distribution model SWAT (Soil Water Assessment Tool) was applied to evaluate the trajectory of watershed nutrient transportation over time. Based on the analysis of driving factors, three experiments corresponding to natural, traditional and modern agriculture processes respectively were designed to evaluate the changes of nutrient inputs from catchments under the three environments. The simulation results showed that there were variations in nutrient production and changes in the range and rate. For three periods of the experiments, TN concentrations have changed as 0.12→0.31→1.15 mg/L, and production as 420→1650→6522 T/a; while TP concentrations changed as 0.018→0.057→0.117 mg/L, and production as 78→303→665 T/a. The nutrient transportation experienced slowly long-term increases during 1840―1950, then showed a relatively rapid increase during the period of 1950―1980s and the period from 1980 to early 1990s, with increasing rate of 1.4% and 2.4% respectively. And from the later 1990s to now, an obviously increasing trend with 15% increasing rate occurred. The effect from human activities on the watershed nutrient transportation increased rapidly, and had become a dominant factor in changes of the nutrient transportation.展开更多
Measured concentrations of dissolved oxygen,phosphate,silicate,total alkalinity and calculated totalCO<sub>2</sub> in a section between 121°E and 125°E across the Kuroshio near 22°N off Taiw...Measured concentrations of dissolved oxygen,phosphate,silicate,total alkalinity and calculated totalCO<sub>2</sub> in a section between 121°E and 125°E across the Kuroshio near 22°N off Taiwan and thegeostrophic velocity were used to estimate the gross transport of oxygen,nutrients and carbonates. The flux of dissolved oxygen is 6.7×10<sup>6</sup> mol/s northward and 0.9×10<sup>6</sup> mol/s southward.The netflux equals 5.8×10<sup>6</sup> mol/s down-stream.The northward flux of phosphate is 22.6×10<sup>3</sup> mol/s;the south-ward flux is 1.4×10<sup>3</sup> mol/s.The net phosphate flux is 21.2×10<sup>3</sup> mol/s northward.The flux of silicateis 967×10<sup>3</sup> northward and 59×10<sup>3</sup> mol/s southward;the net transport is 908×10<sup>3</sup> mol/s down-stream.The flux of alkalinity is 75.5×10<sup>6</sup> mol/s northward,and 10.8×10<sup>6</sup> mol/s southward,the net flux is64.7×10<sup>6</sup> mol/s northward.For total CO<sub>2</sub> the transport is 73.4×10<sup>6</sup> mol/s northward and 10.8×10<sup>6</sup> mol/ssouthward,or a net transport of 62.6×10<sup>6</sup> mol/s northward.展开更多
Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were...Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4+, NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4+ and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.展开更多
A 3 × 4 factorial experiment was con- ducted to determine the effect of dietary nutrient den- sity on growth performance, physiological parame- ters, and small intestinal epithelial phosphate trans- porter expres...A 3 × 4 factorial experiment was con- ducted to determine the effect of dietary nutrient den- sity on growth performance, physiological parame- ters, and small intestinal epithelial phosphate trans- porter expression in broiler chicks fed different dietary nutrient density (DND) and non-phytate phosphorus (NPP) levels. Dietary energy densities used had ME values of 2,850, 2,950, and 3,050 kcal/kg of diet and the NPP levels were 0.35%, 0.40%, 0.45%, and 0.50% within each ME value. Crude protein and essential amino acids levels were maintained propor- tionally to dietary ME levels. Each of the twelve diets was fed to five pens of seven male broiler chicks from 1 to 21 days of age. Broiler growth performance, ser- um physiological parameters, 1-hydroxylase activity in the kidney, type-IIb sodium phosphate co-trans- porter (NaPi-IIb), and vitamin D receptor (VDR) expression levels in the duodenal mucosa were deter- mined. Our results showed that an increase in dietary nutrient density increased body weight and improved feed conversion. Additionally, serum parathyroid hormone concentration, 1-a-hydroxylase activity in the kidney, NaPi-IIb mRNA expression and VDR protein expression in the duodenal mucosa increased as DND increased. Feed intake and body weight in- creased as NPP levels increased. Serum parathyroid hormone, VDR and NaPi-IIb gene expression also in- creased as the level of NPP in the diet increased at the medium range level. The results of this study suggest that high DND can increase small intestinal type IIb sodium dependent phosphate co-transporter mRNA expression by up-regulating parathyroid hormone and activation of 1-ot-hydroxylase activity which might be in consistent with high growth rate of broilers. Small intestinal NaPi-IIb mRNA expression increases linear- ly only within the range of dietary NPP dosage levels close to the requirement recommended in the broilers feeding standards.展开更多
On the basis of the in situ data of DO2, pH, SiO2. PO4-P, NO3-N and NO2-N collected in the north of the East China Sea during 1987-1988, the following points are mainly expounded.1.The inorgonic nutrients are obviousl...On the basis of the in situ data of DO2, pH, SiO2. PO4-P, NO3-N and NO2-N collected in the north of the East China Sea during 1987-1988, the following points are mainly expounded.1.The inorgonic nutrients are obviously affected by continent runoff in the north of the East China Sea. Their distributions are characteristic of its distribution of terrigenous materials.2.There are three transport paths of nutrients from the shelf to the Kuroshio area. The first is mixing-diffusing-advec-tion and upwelling process, the process of biology and biochemistry belongs to the second, and the sinking process is the last one.3.The swing of the Kuroshio axis affectes both the range of the migration of substances through mixing-diffusing-advec-tion process and the upwelling degree of the subsurface Kuroshio water to the shelf.4.Most part of the substances sink as macroparticles to the deep layer before reaching the Kuroshio area.展开更多
Litter size and birth weights are limited by uterine capacity, defined as the ability of the uterus to maintain the appropriate development of some number of conceptuses. Uterine capacity is the result of the combined...Litter size and birth weights are limited by uterine capacity, defined as the ability of the uterus to maintain the appropriate development of some number of conceptuses. Uterine capacity is the result of the combined effects of uterine, placental and embryo/fetal function. The number of living conceptuses that the uterus is capable of supporting is greater during early gestation compared to later gestation. Plots of log fetal weight versus log placental weight also indicate that fetal weights are less sensitive to reduced placental weight (and therefore reduced intrauterine space) in early gestation compared to late gestation. However, even in late gestation, mechanisms still exist that maintain fetal growth when the size of the placenta is reduced. One such mechanism is likely to be improved development of the folded placental-epithelial/maternal-epithelial bilayer. Fold depth, and therefore the maternal fetal interactive surface, increases as gestation advances and is greater in placenta from smal fetuses. On the fetal side of the placenta, the epithelial bilayer is embedded in stromal tissue. Glycosaminoglycans are major components of stroma, including hyaluronan and heparan sulfate. Hyaluronidases and heparanases are present within placental tissues, and likely play roles in modification of stromal components to facilitate fold development. Glycosaminoglycans are polymers of forms of glucose (glucosamine, glucuronic acid, iduronic acid) suggesting that glycosaminoglycan synthesis may compete with the glucose needs of the developing fetus. Pig conceptuses are fructogenic, such that a substantial portion of glucose transferred from mother to fetus is converted to fructose. Fructose is an intermediate product in the synthesis of glucosamine from glucose, and glucosamine is linked to regulation of trophoblast cell proliferation through regulation of mTOR. These findings suggest a link between glucose, fructose, glucosamine synthesis, GAG production, and placental morphogenesis, but the details of these interactions remain unclear. In addition, recent placental epithelial transcriptome analysis identified several glucose, amino acid, lipid, vitamin, mineral and hormone transporter mechanisms within the placenta. Further elucidation of mechanisms of placental morphogenesis and solute transport could provide clues to improving nutrient transport to the pig fetus, potentially increasing litter size and piglet birth weights.展开更多
Inadequate delivery of nutrients results in intrauterine growth restriction (IUGR), which is a leading cause of neonatal morbidity and mortality in livestock. In ruminants, inadequate nutrition during pregnancy is o...Inadequate delivery of nutrients results in intrauterine growth restriction (IUGR), which is a leading cause of neonatal morbidity and mortality in livestock. In ruminants, inadequate nutrition during pregnancy is often prevalent due to frequent utilization of exensive forage based grazing systems, making them highly susceptible to changes in nutrient quality and availability. Delivery of nutrients to the fetus is dependent on a number of critical factors including placental growth and development, utero-placental blood flow, nutrient availability, and placenta metabolism and transport capacity. Previous findings from our laboratory and others, highlight essential roles for amino acids and their metabolites in supporting normal fetal growth and development, as well as the critical role for amino acid transporters in nutrient delivery to the fetus. The focus of this review will be on the role of materna nutrition on placental form and function as a regulator of fetal development in ruminants.展开更多
In June 2003 and 2006 concentrations of nutrient were determined in the Changjiang Estuary. The data indicated that phosphate and nitrate did not behave conservatively in the estuary, but silicate behaved conservative...In June 2003 and 2006 concentrations of nutrient were determined in the Changjiang Estuary. The data indicated that phosphate and nitrate did not behave conservatively in the estuary, but silicate behaved conservatively. An important mobilization of phosphate and nitrate was observed from the river up to halfway in the estuary. Both input flux (from river to estuary) and output flux (from estuary to coastal zone) of phosphate, silicate and nitrate were calculated from statistical interpretations of the salinity profiles. There was a large discrepancy between input and output fluxes of phosphate and nitrate. The river fluxes of silicate, phosphate and nitrate (fr) are augmented 5.3%, 28.9% and 36.6% in June 2003 and 1.0%, 62.5%, 31.7% in June 2006 by internal inputs (fi).The phosphate and nitrate fluxes are enhanced through the estuarine process, while silicate flux is unaltered. The authors present some long-term data for nutrient concentrations and the ratios of silicon to nitrogen to phosphorus in the Changjiang Estuary. Silicate level falled in the last two decades, while concentration of nitrate increased. Phosphate concentration had no significant change.展开更多
Tissue engineering is a preeminent field which aims to regenerate or repair the functions of devastated or damaged organs or tissues due to some accident, disease or age related degeneration. This field provides immen...Tissue engineering is a preeminent field which aims to regenerate or repair the functions of devastated or damaged organs or tissues due to some accident, disease or age related degeneration. This field provides immense help in saving lives of thousands of patients. Tissues or organs are engineered within the patient’s body or in a laboratory, which is later implanted in the patient’s body. The important challenges for tissue engineers are: appropriate nutrients supply and optimum cell density with uniform distribution of cells in a final construct. Mathematical modeling is the best tool in order to understand the mechanism of cell proliferation and nutrient supply in a bioreactor. Mathematical models not only help to analyze potentially useful results but also enlighten the way of further research. In this work, a simple mathematical model of diffusive nutrient transport and non-linear cell proliferation in a bioreactor is developed. A cell seeded porous scaffold is kept in a bioreactor with a fixed nutrient supply. We model the consumption and transport of nutrients by reaction-diffusion equation and cell proliferation by Fisher Kolmogorove equation. Nutrient delivery to the cell seeded scaffold is purely due to diffusion. The model is solved numerically by commercial finite element solver COMSOL. The results show that all types of constructs, if nutrient supply depends on diffusion, will produce cell proliferated regions near nutrient supply. The results are presented for uniform and non-uniform initial cell seeding strategies. It is also observed that cell proliferation is insensitive to the initial seeding strategy.展开更多
Conditions in rat and turtle small intestine tissue where glucose and glycine transport is inhibited while glucose-induced Na+ transport is preserved are described. The generally accepted model for the Na+-dependent t...Conditions in rat and turtle small intestine tissue where glucose and glycine transport is inhibited while glucose-induced Na+ transport is preserved are described. The generally accepted model for the Na+-dependent transporter (а single channel for the Na+ and nutrient) does not account for the data obtained from the analysis of the interaction between the transport of glucose, glycine, and Na+ at different temperatures and the effect of inhibitors оn these рroсеssеs. The phenomenon of temperature uncoupling of Na+ and nutrient transport саn best bе described bу а two-pathway model with а gate mechanism. According to this model, the Na+-dependent transporter has at least two pathways: оnе for Na+ and another for nutrients. The model рrovidеs for the passage of Na+ in both directions along а channel opened bу glucose. Experiments are carried out using the addition of glucose and glycine on backgrounds of glycine and glucose, respectively. It has been hypothesized that when all three transporters (for Na+, glucose and glycine) are unite in a single structure, then there should be “competitive relations” between short-circuit current changes on glycine and glucose for sodium ions passing through its transporter.展开更多
基金partially supported by the National Key Research and Development Program of China(2021YFD1300201)Jilin Province Key Research and Development Program of China(20220202044NC)。
文摘Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.
基金the National Natural Science Foundation of China(31871564)the National Key R&D Program of China(2016YFD0300506 and 2017YFD0301700)the Sichuan Breeding Key Research Project,China(2016NYZ0051)。
文摘The yield and nitrogen use efficiency(NUE)of hybrid rice combinations are closely related to restorer line.Therefore,it is essential to evaluate the agronomic characteristics of restorer lines with high yield and high NUE(HYHN).However,it is unclear which restorer lines are HYHN,and neither have the common agronomic traits of the HYHN restorer lines been identified.Aiming to address this issue,we conducted two filed experiments using three nitrogen applications,which screened five HYHN restorer lines from 15 indica restorer lines.Yield,NUE and nutrient transportation of restorer lines with different yields and NUE types were examined.Yield and total nitrogen absorption in aboveground biomass(TNA)increased,whereas NUE for grain production decreased with increasing nitrogen application levels.The HYHN restorer lines had large spikelets and high weight per panicle that were significantly positively correlated with yield and NUE.Therefore,large sink potential may be beneficial for both yield and NUE.We further studied the differences in nutrient transportation to panicles between the HYHN and low yield and low NUE(LYLN)restorer lines and found that the former had a higher nitrogen absorption level and dry matter weight ratios of panicle in maturity.Moreover,the HYHN lines also had a higher root and neck-panicle node bleeding intensity per stem after heading and more developed vascular bundles of neck-panicle nodes and leaves than the LYLN lines,which could contribute to the transportation of nutrients from root to ground and from stem and leaf to spike.Therefore,the advantages of large sink potential of the HYHN restorer lines include large nutrient accumulation in and distribution to the panicles and smooth flow of nutrients along the transportation channels.
基金funded by Teagasc as part of the Irish National Development Plan
文摘Background: Studies have shown clear differences between dairy breeds in their feed intake and production efficiencies. The duodenum is critical in the coordination of digestion and absorption of nutrients. This study examined gene transcript abundance of important classes of nutrient transporters in the duodenum of non lactating dairy cows of different feed efficiency potential, namely Holstein-Friesian (HF), Jersey (JE) and their F1 hybrid. Duodenal epithelial tissue was collected at slaughter and stored at -80℃. Total RNA was extracted from tissue and reverse transcribed to generate cDNA. Gene expression of the following transporters, namely nucleoside amino acid; sugar; mineral; and lipid transporters was measured using quantitative real-time RT-PCR. Data were statistically analysed using mixed models ANOVA in SAS. Orthogonal contrasts were used to test for potential heterotic effects and spearman correlation coefficients calculated to determine potential associations amongst gen, expression values and production efficiency variables. Results: While there were no direct effects of genotype on expression values for any of the genes examined, there was evidence for a heterotic effect (P 〈 0.05) on ABCGS, in the form of increased expression in the F1 genotype compared to either of the two parent breeds. Additionally, a tendency for increased expression of the amino acid transporters, SLC3A1 (P= 0.072), SLC3A2 (P= 0.081) and SLC6A 14 (P= 0.072) was also evident in the F1 genotype. A negative (P 〈 0.05) association was identified between the expression of the glucose transporter gene SLCSA1 and total lactational milk solids yield, corrected for body weight. Positive correlations (P 〈 0.05) were also observed between the expression values of genes involved in common transporter roles. Conclusion: This study suggests that differences in the expression of sterol and amino acid transporters in the duodenum could contribute towards the documented differences in feed efficiency between HF, JE and their F1 hybrid. Furthermore, positive associations between the expression of genes involved in common transporter roles suggest that these may be co-regulated. The study identifies potential candidates for investigation of genetic variants regulating nutrient transport and absorption in the duodenum in dairy cows, which may be incorporated into future breeding programmes.
基金supported by the National Natural Science Foundation of China (Nos.52270202,and 41877471)the special fund was from the State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-environmental Sciences,Chinese Academy of Sciences) (No.21Z02ESPCR)。
文摘Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distribution and transport of nutrients along the channel were poorly understood.Based on a time-series dataset as well as mass balance and material flow analysis methods,the water and nutrient transport fluxes in the Middle Route of the South-to-North Water Diversion Project were identified in this study.The results indicate that the nutrient concentrations varied considerably with time,but there was no significant difference among the 30 stations of the main channel.Seasonal temperature difference was the major factor in the large fluctuations of water quality indicators over time.The nutrient loadings varied with the water volume outputs from the main channel to the waterreceiving cities.Atmospheric deposition was an important source of nutrients in the main channel,accounting for 9.13%,20.6%,and 0.635%of the nitrogen,phosphorus,and sulfur input from the Danjiangkou Reservoir,respectively.In 2021,a net accumulation of 988 tons of N,29 tons of P,and 2,540 tons of S,respectively,were present in the main channel.The increase of these external and internal nutrient loadings would cause water quality fluctuation and deterioration in some local sections of the main channel.Our study quantified the spatial and temporal patterns of nutrient transport in the Middle Route and revealed the ecological effects on the aquatic environment,assisting authorities on the project to develop effective water conservation strategies.
基金Project supported by the Spark Program of Guangdong,China(No.2012A020603012)
文摘The objective of this study was to investigate the relationship between gene expression of nutrient(amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons(Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions(temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day(E) 9, 11, 13, 15 and day of hatch(DOH). The eggs, embryos(without yolk sac), and organs(head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The m RNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction(RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The m RNA abundances of b^0,+AT, EAAT3, y^+LAT2, Pep T1, LAT4, NHE2, and NHE3 increased linearly with age, whereas m RNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b^0,+AT, EAAT3, Pep T1, LAT4, NHE2, NHE3, and y^+LAT2 had positive correlations with body weight(0.71〈correlation coefficient(CC)〈0.82, P〈0.0001), while CAT1, CAT2, EAAT2, SNAT1, and SNAT2 had negative correlations with body weight(-0.86〈CC〈-0.64, P〈0.0001). The gene expressions of b^0,+AT, EAAT3, LAT4, Pep T1, NHE2, NHE3, and y^+LAT2 showed positive correlations with intestinal weight(0.80〈CC〈0.91, P〈0.0001), while CAT1, CAT2, and EAAT2 showed negative correlations with intestinal weight(-0.84〈CC〈-0.67, P〈0.0001). It was concluded that the differences between growth trajectories of organs and gene expression of nutrient transporters in small intestine were due to their functional and physiological properties, which provided a comprehensive study of amino acid and peptide transporter m RNA in the small intestine during embryonic growth of pigeons.
文摘A trophic state increase relates to surface water bodies nutrient enrichment,due to the chemical products used such as fertilizers in agriculture and residues from cattle raising activities.This research consists of nutrient transport numerical modeling to analyze the Betancíreservoir trophic state in Colombia;Water samples were collected to analyze total nitrogen,total phosphorus,ammonia,nitrates,nitrites,phosphates,chlorophyll-a,dissolved oxygen,BOD,COD,suspended solids,and water trans-parency.The water quality model MOHID Studio was implemented and after its calibration,scenarios of increase and decrease of nutrients and inflows to the reservoir through its main tributaries were simulated to reproduce the agricultural activity changes in the basin and the effects that would have on the reservoir's trophic state dynamics;Therefore,the Carlson Trophic Status Index was calculated for each case.The results show that variations in total nitrogen concentration and increased inflows present short-term consequences on the reservoir's trophic state.Increasing the incoming total nitrogen con-centrations by 100%causes the reservoir to change from a light eutrophic to a hypereutrophic state.The results of this research provide a starting tool to water resources integrated management in reservoirs.
基金The National Natural Science Foundation of China under contract Nos 42006018, 41876018 and 42176198the Grants-in-Aid for Scientific Research [MEXT KAKENHI] under contract No.22H05206the Tianjin Municipal Education Commission Scientific Research Project under contract No.2019KJ219。
文摘The nutrients from the East China Sea(ECS) through the Tsushima/Korea Strait(TS) strongly impact the eco system of the Japan Sea(JS).The complex origins of the Tsushima Warm Current and the various nutrient sources in the ECS result in complex spatial-temporal variations in nutrients in the TS.Using a physical-biological model with a tracking technique,we studied the effects of nutrient sources from the ECS on the TS.Among all the nutrient sources,the Kuroshio has the highest nutrient concentrations in the TS.Its maximum concentration occurs at the bottom,while those of rivers and atmospheric depo sition occur at the surface,and that of the Taiwan Strait occurs in the middle layer.The nutrient transport through the TS exhibits similar seasonal variations,as does the volume transport.The transport of nutrients from the Kuroshio accounts for more than 85% of the total.The transport of nutrients from the Taiwan Strait is greater during autumn and winter.The transport of dissolved inorganic nitrogen(DIN) from both rivers and atmospheric deposition through the TS peak in August.Nutrient transport cannot be equated with volume transport.The DIN in the less saline zone originates not only from rivers but also from atmospheric deposition and the Kuroshio.The transport of nutrients from the Taiwan Strait is not as significant as its volume transport in the TS.
基金the Major Special Program of National Science and Technology of China (Grant No. 2008ZX02002-001)
文摘Nutrients transported from catchments are one of the most important sources for lake eutrophication. In this study, the Honghu Lake Basin, located at the middle reaches of the Yangtze River, was chosen as the study area, and the watershed hydrological distribution model SWAT (Soil Water Assessment Tool) was applied to evaluate the trajectory of watershed nutrient transportation over time. Based on the analysis of driving factors, three experiments corresponding to natural, traditional and modern agriculture processes respectively were designed to evaluate the changes of nutrient inputs from catchments under the three environments. The simulation results showed that there were variations in nutrient production and changes in the range and rate. For three periods of the experiments, TN concentrations have changed as 0.12→0.31→1.15 mg/L, and production as 420→1650→6522 T/a; while TP concentrations changed as 0.018→0.057→0.117 mg/L, and production as 78→303→665 T/a. The nutrient transportation experienced slowly long-term increases during 1840―1950, then showed a relatively rapid increase during the period of 1950―1980s and the period from 1980 to early 1990s, with increasing rate of 1.4% and 2.4% respectively. And from the later 1990s to now, an obviously increasing trend with 15% increasing rate occurred. The effect from human activities on the watershed nutrient transportation increased rapidly, and had become a dominant factor in changes of the nutrient transportation.
文摘Measured concentrations of dissolved oxygen,phosphate,silicate,total alkalinity and calculated totalCO<sub>2</sub> in a section between 121°E and 125°E across the Kuroshio near 22°N off Taiwan and thegeostrophic velocity were used to estimate the gross transport of oxygen,nutrients and carbonates. The flux of dissolved oxygen is 6.7×10<sup>6</sup> mol/s northward and 0.9×10<sup>6</sup> mol/s southward.The netflux equals 5.8×10<sup>6</sup> mol/s down-stream.The northward flux of phosphate is 22.6×10<sup>3</sup> mol/s;the south-ward flux is 1.4×10<sup>3</sup> mol/s.The net phosphate flux is 21.2×10<sup>3</sup> mol/s northward.The flux of silicateis 967×10<sup>3</sup> northward and 59×10<sup>3</sup> mol/s southward;the net transport is 908×10<sup>3</sup> mol/s down-stream.The flux of alkalinity is 75.5×10<sup>6</sup> mol/s northward,and 10.8×10<sup>6</sup> mol/s southward,the net flux is64.7×10<sup>6</sup> mol/s northward.For total CO<sub>2</sub> the transport is 73.4×10<sup>6</sup> mol/s northward and 10.8×10<sup>6</sup> mol/ssouthward,or a net transport of 62.6×10<sup>6</sup> mol/s northward.
基金This research was granted by the National Natural Science Foundation of China (50579021);the National Key Basic Research Program of China (No. 2002CB412405).
文摘Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4+, NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4+ and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.
基金supported by the ear-marked fund for Modern Agro-Industry Technology Research System
文摘A 3 × 4 factorial experiment was con- ducted to determine the effect of dietary nutrient den- sity on growth performance, physiological parame- ters, and small intestinal epithelial phosphate trans- porter expression in broiler chicks fed different dietary nutrient density (DND) and non-phytate phosphorus (NPP) levels. Dietary energy densities used had ME values of 2,850, 2,950, and 3,050 kcal/kg of diet and the NPP levels were 0.35%, 0.40%, 0.45%, and 0.50% within each ME value. Crude protein and essential amino acids levels were maintained propor- tionally to dietary ME levels. Each of the twelve diets was fed to five pens of seven male broiler chicks from 1 to 21 days of age. Broiler growth performance, ser- um physiological parameters, 1-hydroxylase activity in the kidney, type-IIb sodium phosphate co-trans- porter (NaPi-IIb), and vitamin D receptor (VDR) expression levels in the duodenal mucosa were deter- mined. Our results showed that an increase in dietary nutrient density increased body weight and improved feed conversion. Additionally, serum parathyroid hormone concentration, 1-a-hydroxylase activity in the kidney, NaPi-IIb mRNA expression and VDR protein expression in the duodenal mucosa increased as DND increased. Feed intake and body weight in- creased as NPP levels increased. Serum parathyroid hormone, VDR and NaPi-IIb gene expression also in- creased as the level of NPP in the diet increased at the medium range level. The results of this study suggest that high DND can increase small intestinal type IIb sodium dependent phosphate co-transporter mRNA expression by up-regulating parathyroid hormone and activation of 1-ot-hydroxylase activity which might be in consistent with high growth rate of broilers. Small intestinal NaPi-IIb mRNA expression increases linear- ly only within the range of dietary NPP dosage levels close to the requirement recommended in the broilers feeding standards.
文摘On the basis of the in situ data of DO2, pH, SiO2. PO4-P, NO3-N and NO2-N collected in the north of the East China Sea during 1987-1988, the following points are mainly expounded.1.The inorgonic nutrients are obviously affected by continent runoff in the north of the East China Sea. Their distributions are characteristic of its distribution of terrigenous materials.2.There are three transport paths of nutrients from the shelf to the Kuroshio area. The first is mixing-diffusing-advec-tion and upwelling process, the process of biology and biochemistry belongs to the second, and the sinking process is the last one.3.The swing of the Kuroshio axis affectes both the range of the migration of substances through mixing-diffusing-advec-tion process and the upwelling degree of the subsurface Kuroshio water to the shelf.4.Most part of the substances sink as macroparticles to the deep layer before reaching the Kuroshio area.
文摘Litter size and birth weights are limited by uterine capacity, defined as the ability of the uterus to maintain the appropriate development of some number of conceptuses. Uterine capacity is the result of the combined effects of uterine, placental and embryo/fetal function. The number of living conceptuses that the uterus is capable of supporting is greater during early gestation compared to later gestation. Plots of log fetal weight versus log placental weight also indicate that fetal weights are less sensitive to reduced placental weight (and therefore reduced intrauterine space) in early gestation compared to late gestation. However, even in late gestation, mechanisms still exist that maintain fetal growth when the size of the placenta is reduced. One such mechanism is likely to be improved development of the folded placental-epithelial/maternal-epithelial bilayer. Fold depth, and therefore the maternal fetal interactive surface, increases as gestation advances and is greater in placenta from smal fetuses. On the fetal side of the placenta, the epithelial bilayer is embedded in stromal tissue. Glycosaminoglycans are major components of stroma, including hyaluronan and heparan sulfate. Hyaluronidases and heparanases are present within placental tissues, and likely play roles in modification of stromal components to facilitate fold development. Glycosaminoglycans are polymers of forms of glucose (glucosamine, glucuronic acid, iduronic acid) suggesting that glycosaminoglycan synthesis may compete with the glucose needs of the developing fetus. Pig conceptuses are fructogenic, such that a substantial portion of glucose transferred from mother to fetus is converted to fructose. Fructose is an intermediate product in the synthesis of glucosamine from glucose, and glucosamine is linked to regulation of trophoblast cell proliferation through regulation of mTOR. These findings suggest a link between glucose, fructose, glucosamine synthesis, GAG production, and placental morphogenesis, but the details of these interactions remain unclear. In addition, recent placental epithelial transcriptome analysis identified several glucose, amino acid, lipid, vitamin, mineral and hormone transporter mechanisms within the placenta. Further elucidation of mechanisms of placental morphogenesis and solute transport could provide clues to improving nutrient transport to the pig fetus, potentially increasing litter size and piglet birth weights.
文摘Inadequate delivery of nutrients results in intrauterine growth restriction (IUGR), which is a leading cause of neonatal morbidity and mortality in livestock. In ruminants, inadequate nutrition during pregnancy is often prevalent due to frequent utilization of exensive forage based grazing systems, making them highly susceptible to changes in nutrient quality and availability. Delivery of nutrients to the fetus is dependent on a number of critical factors including placental growth and development, utero-placental blood flow, nutrient availability, and placenta metabolism and transport capacity. Previous findings from our laboratory and others, highlight essential roles for amino acids and their metabolites in supporting normal fetal growth and development, as well as the critical role for amino acid transporters in nutrient delivery to the fetus. The focus of this review will be on the role of materna nutrition on placental form and function as a regulator of fetal development in ruminants.
基金The National Natural Science Foundation of China (NSFC) under contract No. 30490232Chinese "973" Projectunder contract Nos 2002CB412405 and 2005CB422305
文摘In June 2003 and 2006 concentrations of nutrient were determined in the Changjiang Estuary. The data indicated that phosphate and nitrate did not behave conservatively in the estuary, but silicate behaved conservatively. An important mobilization of phosphate and nitrate was observed from the river up to halfway in the estuary. Both input flux (from river to estuary) and output flux (from estuary to coastal zone) of phosphate, silicate and nitrate were calculated from statistical interpretations of the salinity profiles. There was a large discrepancy between input and output fluxes of phosphate and nitrate. The river fluxes of silicate, phosphate and nitrate (fr) are augmented 5.3%, 28.9% and 36.6% in June 2003 and 1.0%, 62.5%, 31.7% in June 2006 by internal inputs (fi).The phosphate and nitrate fluxes are enhanced through the estuarine process, while silicate flux is unaltered. The authors present some long-term data for nutrient concentrations and the ratios of silicon to nitrogen to phosphorus in the Changjiang Estuary. Silicate level falled in the last two decades, while concentration of nitrate increased. Phosphate concentration had no significant change.
文摘Tissue engineering is a preeminent field which aims to regenerate or repair the functions of devastated or damaged organs or tissues due to some accident, disease or age related degeneration. This field provides immense help in saving lives of thousands of patients. Tissues or organs are engineered within the patient’s body or in a laboratory, which is later implanted in the patient’s body. The important challenges for tissue engineers are: appropriate nutrients supply and optimum cell density with uniform distribution of cells in a final construct. Mathematical modeling is the best tool in order to understand the mechanism of cell proliferation and nutrient supply in a bioreactor. Mathematical models not only help to analyze potentially useful results but also enlighten the way of further research. In this work, a simple mathematical model of diffusive nutrient transport and non-linear cell proliferation in a bioreactor is developed. A cell seeded porous scaffold is kept in a bioreactor with a fixed nutrient supply. We model the consumption and transport of nutrients by reaction-diffusion equation and cell proliferation by Fisher Kolmogorove equation. Nutrient delivery to the cell seeded scaffold is purely due to diffusion. The model is solved numerically by commercial finite element solver COMSOL. The results show that all types of constructs, if nutrient supply depends on diffusion, will produce cell proliferated regions near nutrient supply. The results are presented for uniform and non-uniform initial cell seeding strategies. It is also observed that cell proliferation is insensitive to the initial seeding strategy.
文摘Conditions in rat and turtle small intestine tissue where glucose and glycine transport is inhibited while glucose-induced Na+ transport is preserved are described. The generally accepted model for the Na+-dependent transporter (а single channel for the Na+ and nutrient) does not account for the data obtained from the analysis of the interaction between the transport of glucose, glycine, and Na+ at different temperatures and the effect of inhibitors оn these рroсеssеs. The phenomenon of temperature uncoupling of Na+ and nutrient transport саn best bе described bу а two-pathway model with а gate mechanism. According to this model, the Na+-dependent transporter has at least two pathways: оnе for Na+ and another for nutrients. The model рrovidеs for the passage of Na+ in both directions along а channel opened bу glucose. Experiments are carried out using the addition of glucose and glycine on backgrounds of glycine and glucose, respectively. It has been hypothesized that when all three transporters (for Na+, glucose and glycine) are unite in a single structure, then there should be “competitive relations” between short-circuit current changes on glycine and glucose for sodium ions passing through its transporter.