In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division ...In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).展开更多
By controlling the wavelength and power of multiple light sources, we have realized a highly flexible Nyquist pulse generation scheme, in which the pulse repetition frequency, pulse multiplication factor, waveform env...By controlling the wavelength and power of multiple light sources, we have realized a highly flexible Nyquist pulse generation scheme, in which the pulse repetition frequency, pulse multiplication factor, waveform envelope shape, and duty cycle are all tunable. By modulating the 3.2 GHz RF signal, we experimentally generated Nyquist pulses with repetition rates of 6.4 GHz and 9.6 GHz, a rectangular wave with a duty cycle of 0.26,and a sawtooth wave with a duty cycle of 0.52.展开更多
基金supported by the National Science Foundation of China(Grant Nos.60977049)the National 863 High Tech Research and Development Program of china(Grant No.2009AA01Z220,2009AA01Z222)Program for Hunan Provincial Science and technology
文摘In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).
基金partially supported by the National Natural Science Foundation of China(NSFC)(Nos.61922056,61875122,and 61535006)
文摘By controlling the wavelength and power of multiple light sources, we have realized a highly flexible Nyquist pulse generation scheme, in which the pulse repetition frequency, pulse multiplication factor, waveform envelope shape, and duty cycle are all tunable. By modulating the 3.2 GHz RF signal, we experimentally generated Nyquist pulses with repetition rates of 6.4 GHz and 9.6 GHz, a rectangular wave with a duty cycle of 0.26,and a sawtooth wave with a duty cycle of 0.52.