Recently,high-performance thin-film lithium niobate optical modulators have emerged that,together with advanced multiplexing technologies,are highly expected to satisfy the ever-growing demand for high-capacity optica...Recently,high-performance thin-film lithium niobate optical modulators have emerged that,together with advanced multiplexing technologies,are highly expected to satisfy the ever-growing demand for high-capacity optical interconnects utilizing multiple channels.Accordingly,in this study,a compact lithium-niobate-on-insulator(LNOI)photonic chip was adopted to establish four-channel wavelength-division-multiplexing(WDM)transmitters,comprising four optical modulators based on ultracompact 2×2 Fabry-Perot cavities and a four-channel WDM filter based on multimode waveguide gratings.The fabricated chip with four wavelength channels has a total footprint as compact as 0.3×2.8 mm^(2),and exhibits an excess loss of~0.8 dB as well as low inter-channel crosstalk of<–22 dB.Using this LNOI photonic chip,high-capacity data transmissions of 320 Gbps(4×80 Gbps)on-off-keying signals and 400 Gbps(4×100 Gbps)four-level pulse amplitude signals were successfully realized with the ultra-low power consumption of 11.9 fJ/bit.展开更多
Nyquist wavelength-division multiplexing (N-WDM) allows high spectral efficiency (SE) in long-haul transmission systems. Compared to polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK), m...Nyquist wavelength-division multiplexing (N-WDM) allows high spectral efficiency (SE) in long-haul transmission systems. Compared to polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK), multilevel modulation, such as PDM 16 quadrature-amplitude modulation (16-QAM), is much more sensitive to intrachannel noise and interchannel linear crosstalk caused by N-WDM. We experimentally generate and transmit a 6 x 128 Gbit/s N-WDM PDM 16-QAM signal over 1200 km single-mode fiber (SMF)-28 with amplification provided by an erbium-doped fiber amplifier (EDFA) only. The net SE is 7.47 bit/s/Hz, which to the best of our knowledge is the highest SE for a signal with a bit rate beyond 100 Gbit/s using the PDM 16-QAM. Such SE was achieved by DSP pre-equalization of transmitter-side impairments and DSP post-equalization of channel and receiver-side impairments. Nyquist-band can be used in pre-equalization to enhance the tolerance of PDM 16-QAM to aggressive spectral shaping. The bit-error ratio (BER) for each of the 6 channels is smaller than the forward error correction (FEC) limit of 3.8 × 10-3 after 1200 km SMF-28 transmission.展开更多
The performance of a wavelength-division multiplexing (WDM) free-space optical (FSO) commu-nication system in a turbulent atmosphere employing optical amplifiers to improve capacity is investigated, in the presence of...The performance of a wavelength-division multiplexing (WDM) free-space optical (FSO) commu-nication system in a turbulent atmosphere employing optical amplifiers to improve capacity is investigated, in the presence of amplified spontaneous emission noise, scintillation, beam spreading, atmospheric attenuation and interchannel crosstalk. Using on-off keying modulation, Monte Carlo simulation techniques are used to obtain the average bit error rate and system capability due to scintillation and the effect of introducing a power control algorithm (PCA) to the system is investigated. The PCA ensures that at any receiving instant, the same turbulence- free powers are received by all the receiving lenses. The performance of various WDM FSO communication system configurations such as non-amplified systems with an adaptive decision threshold (NOAADT), non- amplified systems with a non-adaptive decision threshold, fixed gain amplified systems with an adaptive decision threshold, fixed gain amplified systems with a non- adaptive decision threshold and saturated gain amplified systems with a non-adaptive decision threshold (SOA- NADT) are investigated. Results obtained show that the SOANADT is superior to the NOAADT and the PCA is only beneficial in amplified systems.展开更多
In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division ...In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).展开更多
A high-performance silicon arrayed-waveguide grating(AWG)with 0.4-nm channel spacing for dense wavelength-division multiplexing systems is designed and realized successfully.The device design involves broadening the a...A high-performance silicon arrayed-waveguide grating(AWG)with 0.4-nm channel spacing for dense wavelength-division multiplexing systems is designed and realized successfully.The device design involves broadening the arrayed waveguides far beyond the single-mode regime,which minimizes random phase errors and propagation loss without requiring any additional fabrication steps.To further enhance performance,Euler bends have been incorporated into the arrayed waveguides to reduce the device’s physical footprint and suppress the excitation of higher modes.In addition,shallowly etched transition regions are introduced at the junctions between the free-propagation regions and the arrayed waveguides to minimize mode mismatch losses.As an example,a 32×32 AWG(de)multiplexer with a compact size of 900μm×2200μm is designed and demonstrated with a narrow channel spacing of 0.4 nm by utilizing 220-nm-thick silicon photonic waveguides.The measured excess loss for the central channel is∼0.65 dB,the channel nonuniformity is around 2.5 dB,while the adjacent-channel crosstalk of the central output port is−21.4 dB.To the best of our knowledge,this AWG(de)multiplexer is the best one among silicon-based implementations currently available,offering both dense channel spacing and a large number of channels.展开更多
Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects.Thin-film lithium niobate(TFLN)photonics have emerged as a promising platform fo...Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects.Thin-film lithium niobate(TFLN)photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems.Combining a coarse wavelength-division multiplexing(CWDM)devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators,we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time.The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel(i.e.,an aggregated date rate of 400 Gb/s).展开更多
作为经典的多载波传输技术,OFDM信号由多路并行信号叠加而成,当多路信号以相同的相位进行叠加时就会产生较大的峰值平均功率比(Peak To Average Power Ratio,PAPR)。较高的PAPR要求系统具有线性度较大的高功率放大器和复杂度较高的A/D、...作为经典的多载波传输技术,OFDM信号由多路并行信号叠加而成,当多路信号以相同的相位进行叠加时就会产生较大的峰值平均功率比(Peak To Average Power Ratio,PAPR)。较高的PAPR要求系统具有线性度较大的高功率放大器和复杂度较高的A/D、D/A转换器,否则将直接导致带内失真和带外辐射,使系统的性能下降。为了降低OFDM信号的PAPR,人们提出了大量的方案,例如限幅滤波、部分传输序列、分组编码和脉冲整形等。本文提出采用改进的奈奎斯特脉冲整形技术可以在有效降低OFDM信号的PAPR的同时不增加系统的复杂度,是一种非常简单而有效的解决方案。展开更多
A novel flat-top and low-dispersion optical interleaver using ring cavities (RCs) in a Mach-Zehnder interferometer (MZI) is proposed. It is composed of eight mirrors and two nested prism pairs. Each prism and the ...A novel flat-top and low-dispersion optical interleaver using ring cavities (RCs) in a Mach-Zehnder interferometer (MZI) is proposed. It is composed of eight mirrors and two nested prism pairs. Each prism and the two mirrors behave as a RC. Phase shift of RC is a periodic function of the frequency of the input light which acts as a phase dispersive mirror. The two phase shifts needed to achieve a flat-top spectral passband are provided by Fresnel reflectivities at the prism-air interface of the two RCs. The optimum interface reflectivities for flat passband, high isolation and low dispersion can be obtained only by choosing an appropriate material for the prism in each RC. The proposed interleaver in a 25 GHz channel spacing application exhibits a 0.5 dB passband greater than 24 GHz (96% of the spacing), a 30 dB stopband greater than 21.2 GHz (84.8% of the spacing), a channel isolation higher than 32 dB and chromatic dispersion ±50 ps/nm within the range of center-frequency :t:2 GHz ITU passband.展开更多
In this paper,the sharing schemes of multicast in survivable Wavelength-Division Multi-plexed(WDM) networks are studied and the concept of Shared Risk Link Group(SRLG) is considered.While the network resources are sha...In this paper,the sharing schemes of multicast in survivable Wavelength-Division Multi-plexed(WDM) networks are studied and the concept of Shared Risk Link Group(SRLG) is considered.While the network resources are shared by the backup paths,the sharing way is possible to make the backup paths selfish.This selfishness leads the redundant hops of the backup route and a large number of primary lightpaths to share one backup link.The sharing schemes,especially,the self-sharing and cross-sharing,are investigated to avoid the selfishness when computing the backup light-tree.In order to decrease the selfishness of the backup paths,it is important to make the sharing links fair to be used.There is a trade-off between the self-sharing and cross-sharing,which is adjusted through simulation to adapt the sharing degree of each sharing scheme and save the network resources.展开更多
A novel architecture of wavelength-division multiplexing/optical code division multiplexing access-passive optical network (WDM/OCDMA-PON) based on superstructure fiber Bragg grating (SSFBG) and wavelength re-modu...A novel architecture of wavelength-division multiplexing/optical code division multiplexing access-passive optical network (WDM/OCDMA-PON) based on superstructure fiber Bragg grating (SSFBG) and wavelength re-modulation technology is proposed. In this scheme, WDM is overlaid on OCDMA channel in a single network by virtue of a kind of SSFBC, and the total capacity of hybrid PON can be extended by regulating the transmission power reasonably. Re, modulation technology is also a good method to save wavelength-specific components at the optical network unit (ONU) and cost of wavelength management on the customer side. In simulation system, 1.25 Gb/s up/downstream data are transported with good performance. In addition the crosstalk penalties from adjacent wavelength channels (with the same OC) are found to be negligible in upstream and downstream transmissions.展开更多
Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into l...Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.展开更多
Recently, a tunable fiber Bragg grating(FBG) was developed by using stress-responsive colloidal crystals. In this paper, we have simulated the application of these nanoparticles into the super-structured fiber Bragg g...Recently, a tunable fiber Bragg grating(FBG) was developed by using stress-responsive colloidal crystals. In this paper, we have simulated the application of these nanoparticles into the super-structured fiber Bragg grating(SSFBG) written with perfect sequences derived from a short maximal-length sequence. A tunable SSFBG will be available to overcome the prohibitive temperature variation of the optical codecs. Nevertheless,we presented a method to implement coherent time spreading optical code-division multiple-access(OCDMA) where a unique code(or perfect sequence) can be reused and mixed with different wavelengths to obtain a tunable wavelength-division multiplexing(WDM)system. In order to maximize the binary throughput, we have selected a unique short maximal-length sequence composed of 7 chips that can be tuned with 7 different optical wavelengths. We found thousands of different tunable combinations that presented power contrast ratios(P/C) higher than 12 dB. When a WDM-OCDMA system used 2 different combinations simultaneously, the perfect binary detection with error correction codes was achieved successfully. The tunable SSFBG with colloidal crystals will be a simple and good alternative choice for fiber-to-the-home(FTTH) communications.展开更多
基金the National Major Research and Development Program(No.2018YFB2200200/2018YFB2200201)National Science Fund for Distinguished Young Scholars(61725503)+4 种基金National Natural Science Foundation of China(NSFC)(91950205,61961146003,92150302,62105283,62205286)Zhejiang Provincial Natural Science Foundation(LD19F050001)Zhejiang Provincial Major Research and Development Program(No.2021C01199)Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2021R01001)the Fundamental Research Funds for the Central Universities.The authors thank the Westlake Center for Micro/Nano Fabrication for the partial facility support。
文摘Recently,high-performance thin-film lithium niobate optical modulators have emerged that,together with advanced multiplexing technologies,are highly expected to satisfy the ever-growing demand for high-capacity optical interconnects utilizing multiple channels.Accordingly,in this study,a compact lithium-niobate-on-insulator(LNOI)photonic chip was adopted to establish four-channel wavelength-division-multiplexing(WDM)transmitters,comprising four optical modulators based on ultracompact 2×2 Fabry-Perot cavities and a four-channel WDM filter based on multimode waveguide gratings.The fabricated chip with four wavelength channels has a total footprint as compact as 0.3×2.8 mm^(2),and exhibits an excess loss of~0.8 dB as well as low inter-channel crosstalk of<–22 dB.Using this LNOI photonic chip,high-capacity data transmissions of 320 Gbps(4×80 Gbps)on-off-keying signals and 400 Gbps(4×100 Gbps)four-level pulse amplitude signals were successfully realized with the ultra-low power consumption of 11.9 fJ/bit.
文摘Nyquist wavelength-division multiplexing (N-WDM) allows high spectral efficiency (SE) in long-haul transmission systems. Compared to polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK), multilevel modulation, such as PDM 16 quadrature-amplitude modulation (16-QAM), is much more sensitive to intrachannel noise and interchannel linear crosstalk caused by N-WDM. We experimentally generate and transmit a 6 x 128 Gbit/s N-WDM PDM 16-QAM signal over 1200 km single-mode fiber (SMF)-28 with amplification provided by an erbium-doped fiber amplifier (EDFA) only. The net SE is 7.47 bit/s/Hz, which to the best of our knowledge is the highest SE for a signal with a bit rate beyond 100 Gbit/s using the PDM 16-QAM. Such SE was achieved by DSP pre-equalization of transmitter-side impairments and DSP post-equalization of channel and receiver-side impairments. Nyquist-band can be used in pre-equalization to enhance the tolerance of PDM 16-QAM to aggressive spectral shaping. The bit-error ratio (BER) for each of the 6 channels is smaller than the forward error correction (FEC) limit of 3.8 × 10-3 after 1200 km SMF-28 transmission.
文摘The performance of a wavelength-division multiplexing (WDM) free-space optical (FSO) commu-nication system in a turbulent atmosphere employing optical amplifiers to improve capacity is investigated, in the presence of amplified spontaneous emission noise, scintillation, beam spreading, atmospheric attenuation and interchannel crosstalk. Using on-off keying modulation, Monte Carlo simulation techniques are used to obtain the average bit error rate and system capability due to scintillation and the effect of introducing a power control algorithm (PCA) to the system is investigated. The PCA ensures that at any receiving instant, the same turbulence- free powers are received by all the receiving lenses. The performance of various WDM FSO communication system configurations such as non-amplified systems with an adaptive decision threshold (NOAADT), non- amplified systems with a non-adaptive decision threshold, fixed gain amplified systems with an adaptive decision threshold, fixed gain amplified systems with a non- adaptive decision threshold and saturated gain amplified systems with a non-adaptive decision threshold (SOA- NADT) are investigated. Results obtained show that the SOANADT is superior to the NOAADT and the PCA is only beneficial in amplified systems.
基金supported by the National Science Foundation of China(Grant Nos.60977049)the National 863 High Tech Research and Development Program of china(Grant No.2009AA01Z220,2009AA01Z222)Program for Hunan Provincial Science and technology
文摘In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).
基金supported by the National Natural Science Foundation of China(Grant Nos.U23B2047,62321166651,62205292,and 92150302)the Zhejiang Major Research and Development Program(Grant No.2021C01199)+1 种基金the Zhejiang Provincial Natural Science Foundation(Grant Nos.LZ18F050001,LD19F050001,LQ21F050006,and LD22F040004)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2021R01001)。
文摘A high-performance silicon arrayed-waveguide grating(AWG)with 0.4-nm channel spacing for dense wavelength-division multiplexing systems is designed and realized successfully.The device design involves broadening the arrayed waveguides far beyond the single-mode regime,which minimizes random phase errors and propagation loss without requiring any additional fabrication steps.To further enhance performance,Euler bends have been incorporated into the arrayed waveguides to reduce the device’s physical footprint and suppress the excitation of higher modes.In addition,shallowly etched transition regions are introduced at the junctions between the free-propagation regions and the arrayed waveguides to minimize mode mismatch losses.As an example,a 32×32 AWG(de)multiplexer with a compact size of 900μm×2200μm is designed and demonstrated with a narrow channel spacing of 0.4 nm by utilizing 220-nm-thick silicon photonic waveguides.The measured excess loss for the central channel is∼0.65 dB,the channel nonuniformity is around 2.5 dB,while the adjacent-channel crosstalk of the central output port is−21.4 dB.To the best of our knowledge,this AWG(de)multiplexer is the best one among silicon-based implementations currently available,offering both dense channel spacing and a large number of channels.
基金This work is supported partially by the National Major Research and Development Program(2019YFB1803902)National Natural Science Foundation of China(NSFC)(62135012,62105107)+3 种基金Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2021R01001)Guangdong Basic and Applied Basic Research Foundation(2021A 1515012215,2021B1515120057)Science and Technology Planning Project of Guangdong Province(2019A050510039)Fundamental Research Funds for the Central Universities(2021QNA5001).
文摘Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects.Thin-film lithium niobate(TFLN)photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems.Combining a coarse wavelength-division multiplexing(CWDM)devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators,we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time.The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel(i.e.,an aggregated date rate of 400 Gb/s).
文摘作为经典的多载波传输技术,OFDM信号由多路并行信号叠加而成,当多路信号以相同的相位进行叠加时就会产生较大的峰值平均功率比(Peak To Average Power Ratio,PAPR)。较高的PAPR要求系统具有线性度较大的高功率放大器和复杂度较高的A/D、D/A转换器,否则将直接导致带内失真和带外辐射,使系统的性能下降。为了降低OFDM信号的PAPR,人们提出了大量的方案,例如限幅滤波、部分传输序列、分组编码和脉冲整形等。本文提出采用改进的奈奎斯特脉冲整形技术可以在有效降低OFDM信号的PAPR的同时不增加系统的复杂度,是一种非常简单而有效的解决方案。
基金Projet supported by the National Natural Science Foundation of China (Grant No.10804070)the Innovation Program of Education Commission of Shanghai Municipality (Grant No.09YZ06)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘A novel flat-top and low-dispersion optical interleaver using ring cavities (RCs) in a Mach-Zehnder interferometer (MZI) is proposed. It is composed of eight mirrors and two nested prism pairs. Each prism and the two mirrors behave as a RC. Phase shift of RC is a periodic function of the frequency of the input light which acts as a phase dispersive mirror. The two phase shifts needed to achieve a flat-top spectral passband are provided by Fresnel reflectivities at the prism-air interface of the two RCs. The optimum interface reflectivities for flat passband, high isolation and low dispersion can be obtained only by choosing an appropriate material for the prism in each RC. The proposed interleaver in a 25 GHz channel spacing application exhibits a 0.5 dB passband greater than 24 GHz (96% of the spacing), a 30 dB stopband greater than 21.2 GHz (84.8% of the spacing), a channel isolation higher than 32 dB and chromatic dispersion ±50 ps/nm within the range of center-frequency :t:2 GHz ITU passband.
基金the National Natural Science Foundation of China (No.60502004)
文摘In this paper,the sharing schemes of multicast in survivable Wavelength-Division Multi-plexed(WDM) networks are studied and the concept of Shared Risk Link Group(SRLG) is considered.While the network resources are shared by the backup paths,the sharing way is possible to make the backup paths selfish.This selfishness leads the redundant hops of the backup route and a large number of primary lightpaths to share one backup link.The sharing schemes,especially,the self-sharing and cross-sharing,are investigated to avoid the selfishness when computing the backup light-tree.In order to decrease the selfishness of the backup paths,it is important to make the sharing links fair to be used.There is a trade-off between the self-sharing and cross-sharing,which is adjusted through simulation to adapt the sharing degree of each sharing scheme and save the network resources.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)
文摘A novel architecture of wavelength-division multiplexing/optical code division multiplexing access-passive optical network (WDM/OCDMA-PON) based on superstructure fiber Bragg grating (SSFBG) and wavelength re-modulation technology is proposed. In this scheme, WDM is overlaid on OCDMA channel in a single network by virtue of a kind of SSFBC, and the total capacity of hybrid PON can be extended by regulating the transmission power reasonably. Re, modulation technology is also a good method to save wavelength-specific components at the optical network unit (ONU) and cost of wavelength management on the customer side. In simulation system, 1.25 Gb/s up/downstream data are transported with good performance. In addition the crosstalk penalties from adjacent wavelength channels (with the same OC) are found to be negligible in upstream and downstream transmissions.
基金Natural Science Foundation from Colleges and Universities of Jiangsu Provine(06KJD510034)
文摘Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.
文摘Recently, a tunable fiber Bragg grating(FBG) was developed by using stress-responsive colloidal crystals. In this paper, we have simulated the application of these nanoparticles into the super-structured fiber Bragg grating(SSFBG) written with perfect sequences derived from a short maximal-length sequence. A tunable SSFBG will be available to overcome the prohibitive temperature variation of the optical codecs. Nevertheless,we presented a method to implement coherent time spreading optical code-division multiple-access(OCDMA) where a unique code(or perfect sequence) can be reused and mixed with different wavelengths to obtain a tunable wavelength-division multiplexing(WDM)system. In order to maximize the binary throughput, we have selected a unique short maximal-length sequence composed of 7 chips that can be tuned with 7 different optical wavelengths. We found thousands of different tunable combinations that presented power contrast ratios(P/C) higher than 12 dB. When a WDM-OCDMA system used 2 different combinations simultaneously, the perfect binary detection with error correction codes was achieved successfully. The tunable SSFBG with colloidal crystals will be a simple and good alternative choice for fiber-to-the-home(FTTH) communications.