To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable is...To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.展开更多
The Banian sediment-hosted antimony deposit is a medium-scale deposit located in the Dushan County,South Guizhou,China.Calcite as the dominant gangue mineral can be divided into two types: white and pink,the later is ...The Banian sediment-hosted antimony deposit is a medium-scale deposit located in the Dushan County,South Guizhou,China.Calcite as the dominant gangue mineral can be divided into two types: white and pink,the later is more intimate with mineralization.It is interesting that the REE characteristics are展开更多
Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Ea...Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Eastern Pontides).They are well correlated with Aptian bitumen limestone in the other Tethys Reams.They are proposed as episodes of increased organic matter.However,background factors controlling organic matter enrichment are poorly known.In this study,we present new inorganic geochemistry,including trace elements,rare earth elements(REE),redox-sensitive elements(RSE),stable-isotopes(δ~(18)O andδ~(13)C),and total organic carbon(TOC).We integrated new geochemical data with existing stratigraphy,paleontology,and organic chemistry data to provide new insight into the depositional environment and paleoclimate conditions during Aptian.The lacustrine bitumen limestone(LBL)samples have variedδ~(13)C(ave.-1.45‰)andδ~(18)O(ave.-4.50‰).They possess distinct REE patterns,with an average of REE(ave.14.45 ppm)and Y/Ho(ave.35)ratios.In addition,they have variable Nd/YbN(0.28-0.81;ave.0.56)and Ce/Ce*(0.68-0.97;ave.0.86),and relatively high Eu^(*)/Eu(1.23-1.53;ave.1.35).They display seawater signatures with reduced oxygen conditions.The enrichment in RSE(Mo,Cu,Ni,and Zn)and the low Mo/TOC(0.70-3.69;ave.2.41)support a certain degree of water restriction.The high Sr/Ba,Sr/Cu,Ga/Rb,and K/Al records of the LBL facies suggest hot house climatic conditions.The sedimentary environment was probably an isolated basin that is transformed from the marine basin.In addition to depositional conditions,the regional parameters such as the climate,increased run-off period,nutrient levels,alkalinity level,and dominant carbonate producers favored the enrichment in organic matter of LBL facies.Thus,extreme greenhouse palaeoclimate conditions have an important role in organic matter enrichment in the isolated basin.Our results are conformable with the published data from marine,semi-restricted basin,and lacustrine settings in the different parts of the Tethys margin.Thus,this approach provides the first insight into the Aptian greenhouse paleo-climate conditions of the Eastern Black Sea Region,NE Turkey.展开更多
In this work,an isotopic analysis of δ^(18)O,δ^(13)C,and NO_(3)^(-) concentrations was carried out to identify the origin and the processes related to the contamination of an aquifer located in the state of Guanajua...In this work,an isotopic analysis of δ^(18)O,δ^(13)C,and NO_(3)^(-) concentrations was carried out to identify the origin and the processes related to the contamination of an aquifer located in the state of Guanajuato,Mexico.The research identified the possible sources of δ^(13)C in groundwater.During groundwater flow,CO_(2) participates in different hydrogeochemical reactions in which the dissolution of carbonates or biochemical processes related to biodegradation stand out.Isotopic data of δ^(13)C,δ^(18)O,and the hydrogeochemical behavior of NO_(3)^(-) and HCO_(3)^(-) in water,in addition to isotopic data and the chemical composition of limestones in the study area,were determined to establish the isotopic signature and the processes undergone by the rocks.The isotopic signature of rock and water samples indicated that metamorphic limestones contributed with carbon dioxide to deep groundwater,while in the upper aquifer,bacterial metabolic reactions during nitrification–denitrification could modify the isotopic signature of δ^(13)C in some wells,although atmospheric contribution also plays a role.The modification of the carbon isotopic component is related to the precipitation of calcite in specific regions of the study area,input of atmospheric CO_(2),and soil(e.g.the possible participation of C4-type plants in the assimilation-release of carbon).This process is not confirmed or completely ruled out in this study since agriculture is excessively developed throughout the region.The joint interpretation of isotopic values and the hydrogeochemical behavior of major and conservative elements help in identifying possible pollution processes in which different carbon sources are related.展开更多
The putative Jambil meta-carbonatites of Swat,northern Pakistan,occur as discrete intrusions into the Proterozoic Manglaur Formation,which are difficult to be distinguished from nearby calc-silicate marble because bot...The putative Jambil meta-carbonatites of Swat,northern Pakistan,occur as discrete intrusions into the Proterozoic Manglaur Formation,which are difficult to be distinguished from nearby calc-silicate marble because both rock types experienced regional metamorphism during Himalayan orogenesis that resulted in similar mosaic textures and mineral assemblages.Carbonatites are often significant repositories of economic mineral resources and,therefore,are important to be distinguished from calc-silicate marble.We present new geochemical and geochronology data to distinguish between the two rock types and interpret the petrogenesis and tectonic evolution of the Jambil metacarbonatites.Whole rock chemical data from the Jambil meta-carbonatites show characteristically high rare earth element(REE),Sr contents and lack of negative Eu anomaly,consistent with average calcio-carbonatite values worldwide and an igneous origin.More than 0.5 wt.% SrO in the metacarbonatites and SrO> 0.15 wt.% in constituent rock forming calcite are discriminating signatures of the Jambil meta-carbonatites.Chemically,the Jambil meta-carbonatites are relatively depleted in Rb,Nb,Ta,Ti,Zr and Hf,relatively enriched in Ba,Th,Sr,and have a high LREE/HREE ratio when normalized to primitive mantle.Their carbon and oxygen isotope compositions vary from-3.5‰ to-4.3‰and from 9.7‰ to 12.3‰,respectively.These geochemical characteristics indicate generation of the carbonatites through small degree of partial melting from a carbonated eclogitic source.In-situ,U/Pb analysis of titanite indicates that the Jambil meta-carbonatites were emplacement at 438 ±3 Ma.When combined with regional geological observations,we interpret the emplacement of the Jambil metacarbonatites to have taken place during the Silurian back arc extension within greater Gondwana and mark a transition from a compressional tectonic regime,brought about by collision of microcontinental blocks along the northern margin of Gondwana,to post-orogenic extension in the waning stages of the pre-Himalayan Ordovician orogeny.Finally,in-situ ^(208)Pb/^(232)Th monazite dates(40.3-27.6Ma) extracted from the meta-carbonatites are consistent with the Cenozoic metamorphism of the area.展开更多
基金support granted to carry out the research,and for the funding,Dr.Graciela Herrera Zamarron,responsible for the project with Contract number 0266-1O-ED-F-DGAT-UNAM-2-19-1928.
文摘To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.
文摘The Banian sediment-hosted antimony deposit is a medium-scale deposit located in the Dushan County,South Guizhou,China.Calcite as the dominant gangue mineral can be divided into two types: white and pink,the later is more intimate with mineralization.It is interesting that the REE characteristics are
文摘Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Eastern Pontides).They are well correlated with Aptian bitumen limestone in the other Tethys Reams.They are proposed as episodes of increased organic matter.However,background factors controlling organic matter enrichment are poorly known.In this study,we present new inorganic geochemistry,including trace elements,rare earth elements(REE),redox-sensitive elements(RSE),stable-isotopes(δ~(18)O andδ~(13)C),and total organic carbon(TOC).We integrated new geochemical data with existing stratigraphy,paleontology,and organic chemistry data to provide new insight into the depositional environment and paleoclimate conditions during Aptian.The lacustrine bitumen limestone(LBL)samples have variedδ~(13)C(ave.-1.45‰)andδ~(18)O(ave.-4.50‰).They possess distinct REE patterns,with an average of REE(ave.14.45 ppm)and Y/Ho(ave.35)ratios.In addition,they have variable Nd/YbN(0.28-0.81;ave.0.56)and Ce/Ce*(0.68-0.97;ave.0.86),and relatively high Eu^(*)/Eu(1.23-1.53;ave.1.35).They display seawater signatures with reduced oxygen conditions.The enrichment in RSE(Mo,Cu,Ni,and Zn)and the low Mo/TOC(0.70-3.69;ave.2.41)support a certain degree of water restriction.The high Sr/Ba,Sr/Cu,Ga/Rb,and K/Al records of the LBL facies suggest hot house climatic conditions.The sedimentary environment was probably an isolated basin that is transformed from the marine basin.In addition to depositional conditions,the regional parameters such as the climate,increased run-off period,nutrient levels,alkalinity level,and dominant carbonate producers favored the enrichment in organic matter of LBL facies.Thus,extreme greenhouse palaeoclimate conditions have an important role in organic matter enrichment in the isolated basin.Our results are conformable with the published data from marine,semi-restricted basin,and lacustrine settings in the different parts of the Tethys margin.Thus,this approach provides the first insight into the Aptian greenhouse paleo-climate conditions of the Eastern Black Sea Region,NE Turkey.
基金financed by PAPIIT,and the grant number is IA101019PAPIIT for its support and the scholarships provided to students Cuellar Ramírez E。
文摘In this work,an isotopic analysis of δ^(18)O,δ^(13)C,and NO_(3)^(-) concentrations was carried out to identify the origin and the processes related to the contamination of an aquifer located in the state of Guanajuato,Mexico.The research identified the possible sources of δ^(13)C in groundwater.During groundwater flow,CO_(2) participates in different hydrogeochemical reactions in which the dissolution of carbonates or biochemical processes related to biodegradation stand out.Isotopic data of δ^(13)C,δ^(18)O,and the hydrogeochemical behavior of NO_(3)^(-) and HCO_(3)^(-) in water,in addition to isotopic data and the chemical composition of limestones in the study area,were determined to establish the isotopic signature and the processes undergone by the rocks.The isotopic signature of rock and water samples indicated that metamorphic limestones contributed with carbon dioxide to deep groundwater,while in the upper aquifer,bacterial metabolic reactions during nitrification–denitrification could modify the isotopic signature of δ^(13)C in some wells,although atmospheric contribution also plays a role.The modification of the carbon isotopic component is related to the precipitation of calcite in specific regions of the study area,input of atmospheric CO_(2),and soil(e.g.the possible participation of C4-type plants in the assimilation-release of carbon).This process is not confirmed or completely ruled out in this study since agriculture is excessively developed throughout the region.The joint interpretation of isotopic values and the hydrogeochemical behavior of major and conservative elements help in identifying possible pollution processes in which different carbon sources are related.
基金financial support from the National Centre of Excellence in Geology, University of Peshawar, Pakistan。
文摘The putative Jambil meta-carbonatites of Swat,northern Pakistan,occur as discrete intrusions into the Proterozoic Manglaur Formation,which are difficult to be distinguished from nearby calc-silicate marble because both rock types experienced regional metamorphism during Himalayan orogenesis that resulted in similar mosaic textures and mineral assemblages.Carbonatites are often significant repositories of economic mineral resources and,therefore,are important to be distinguished from calc-silicate marble.We present new geochemical and geochronology data to distinguish between the two rock types and interpret the petrogenesis and tectonic evolution of the Jambil metacarbonatites.Whole rock chemical data from the Jambil meta-carbonatites show characteristically high rare earth element(REE),Sr contents and lack of negative Eu anomaly,consistent with average calcio-carbonatite values worldwide and an igneous origin.More than 0.5 wt.% SrO in the metacarbonatites and SrO> 0.15 wt.% in constituent rock forming calcite are discriminating signatures of the Jambil meta-carbonatites.Chemically,the Jambil meta-carbonatites are relatively depleted in Rb,Nb,Ta,Ti,Zr and Hf,relatively enriched in Ba,Th,Sr,and have a high LREE/HREE ratio when normalized to primitive mantle.Their carbon and oxygen isotope compositions vary from-3.5‰ to-4.3‰and from 9.7‰ to 12.3‰,respectively.These geochemical characteristics indicate generation of the carbonatites through small degree of partial melting from a carbonated eclogitic source.In-situ,U/Pb analysis of titanite indicates that the Jambil meta-carbonatites were emplacement at 438 ±3 Ma.When combined with regional geological observations,we interpret the emplacement of the Jambil metacarbonatites to have taken place during the Silurian back arc extension within greater Gondwana and mark a transition from a compressional tectonic regime,brought about by collision of microcontinental blocks along the northern margin of Gondwana,to post-orogenic extension in the waning stages of the pre-Himalayan Ordovician orogeny.Finally,in-situ ^(208)Pb/^(232)Th monazite dates(40.3-27.6Ma) extracted from the meta-carbonatites are consistent with the Cenozoic metamorphism of the area.