Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+)stabilized by framework Al pairs have been identified a...Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+)stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+)species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+)species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+)species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+)species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+)species corresponding to GaHHW.展开更多
With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive ...With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM).展开更多
The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation resul...The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms.展开更多
On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of ...On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB-H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.04-1.84 k J/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.展开更多
By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2...By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2, C2H3NO2, C2H5NO2, HONO2, CH3ONO2, C2H5ONO2, NH2NO2 (CH3)2NNO2 are computed. By comparing the computed BDEs and experimental results, it is found that the B3LYP method is unable to predict satisfactorily the results of bond dissociation energy (BDE); however, all four CBS models are generally able to give reliable predication of the X(C, N, O)-NO2 BDEs for these nitro compounds. Moreover, the CBS-4M calculation is the least computationally demanding among the four CBS methods considered, Therefore, we recommend CBS-4M method as a reliable method of computing the BDEs for this nitro compound system.展开更多
Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density func...Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density functional theory(DFT)(B3LYP,B3PW91,B3P86,PBE1PBE) and the complete basis set(CBS-Q) method in conjunction with the 6311G^** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work.Comparisons between the computational results and the experimental values reveal that CBS-Q method,which can produce reasonable BDEs for some systems in our previous work,seems unable to predict accurate BDEs here.However,the B3P86 calculated results accord very well with the experimental values,within an average absolute error of 2.3 kcal/mol.Thus,B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds.In addition,the energy gaps between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of studied compounds are estimated,based on which the relative thermal stabilities of the studied acids are also discussed.展开更多
Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B...Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31g^** and 6-311g^** basis sets. The computed BDEs have been compared with the available experimental results. It is found that the B3P86 method with 6-31g^** and 6-311g^** basis sets can obtain satisfactory bond dissociation energies (BDEs), which are in extraordinary agreement with the experimental data. Considering the smaller mean absolute deviation and maximum difference, the reliable B3P86/6-311g^** method was recommended to compute the BDEs for the removal of nitrogen dioxide group in the nitroalkane energetic materials. Using the method, the BDEs of 8 other nitroalkane energetic materials have been calculated and the maximum difference from experimental value is 1.76 kcal.mo1^-1 (for the BDE of tC4Hg-NOz), which further proves the reliability of B3P86/6-311g^** method. In addition, it is noted that the BDEs of C-NO2 bond change slightly for main chain nitroalkane compounds with the maximum difference of only 3.43 kcal mo1^-1.展开更多
The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing t...The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.展开更多
A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition m...A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .展开更多
Neutral aluminium alkyls are well known to act as ethylene oligomerization and polymerization catalysts and cocatalysts.On the basis of the full optimization of alkylaluminium compounds with Gaussian 98 program packag...Neutral aluminium alkyls are well known to act as ethylene oligomerization and polymerization catalysts and cocatalysts.On the basis of the full optimization of alkylaluminium compounds with Gaussian 98 program package at the B3LYP/6-31G** level,the selected structures and bonding energies were investigated extensively.The geometries and bonding energies of AlR3(R = H,CH3,C2H5,C3H7,C4H9) and Al(C2H5)2R'(R' = C2H5,C3H7,C4H9,C5H11,C6H13) were investigated extensively,and we found that,along with the prolongation of carbon chains the terminal C-C bond is shortened gradually until to a constant value of about 0.1532 nm in C4H9;and the bonding energy almost remains constant.The dative bonding of C2H4 to Al(C2H5)3,whose bonding energy is only 15.30 kJ/mol,is very weak.展开更多
Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full c...Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full compactly folded. To investigate the designability of the dented structures, we introduce the hydrogen bond energy in the secondary structures by using the secondary-structure-favored HP model proposed by Ou-yang etc. The result shows that the average designability increases with the strength of the hydrogen bond. The designabilities of the structures with same dented shape increase exponentially with the number of secondary structure sites. The dented structures can have the highest designabilities for a certain value of hydrogen bond energy density.展开更多
On the basis of crystallographic structure of lithium niobate (LN), the bonding energy was quantitatively calculated by the bond valence sum model, which was employed to investigate the crystal growth. A possible rela...On the basis of crystallographic structure of lithium niobate (LN), the bonding energy was quantitatively calculated by the bond valence sum model, which was employed to investigate the crystal growth. A possible relationship between the crystal growth habit and chemical bonding energy of LN crystals are found. It is found that the higher the bond energy, the slower the growth rate, and the more important the plane. The analytical results indicate that (012) plane is the most influential face for the LN crystal growth, which consists well with the standard card (JCPDS Card: 20-0631) and our previous experimental observation. The current work shows that the chemical bond analysis of LN crystals allows us to predict its growth habit and thus to obtain the expected morphology during the spontaneous growth.展开更多
The pair correlation energy of bonding electrons is used and analyzed in the cal- culation of CH and CY (Y = F, O, N) bonding electron pairs in CH3X (X = F, OH, NH2) isoelec- tronic systems based on intra- and interpa...The pair correlation energy of bonding electrons is used and analyzed in the cal- culation of CH and CY (Y = F, O, N) bonding electron pairs in CH3X (X = F, OH, NH2) isoelec- tronic systems based on intra- and interpair correlation energy results at both MP2-OPT2/6- 311++G(d) and MP2-OPT2/cc-pVtz levels with MELD program. Comparison of two set results shows that cc-pVtz and 6-311++G(d) give more correlation energy of valence electrons and innermost core electron pairs, respectively in these systems, resulting that the total correlation energy with cc-pVtz basis of each system is larger than that with 6-311++G(d). Investigations of pair correlation energy show that with the decrease of electronegativity of X atom and the increase of H atoms in these CH3X (X = F, OH, NH2) systems, the pair correlation energy of 1sC2 of the C atoms is transferable, and the correlation energy of CH bonding electron pair with little changes is of approximate transferability, while those of CY (CF, CO, CN) bonding electron pair decrease in a large extent from CH3F through CH3OH to CH3NH2 molecules. It is suggested that the study of pair correlation energy of bonding electrons will further deepen the understanding of electron corre- lation effect from traditional chemical bonding concept.展开更多
In order to use micro ultrasonic bonding technique to package polymer microfluidic chips, an auxiliary microstructure named micro energy director is designed and fabricated. The hot embossing process for PMMA ( polym...In order to use micro ultrasonic bonding technique to package polymer microfluidic chips, an auxiliary microstructure named micro energy director is designed and fabricated. The hot embossing process for PMMA ( polymethyl methacrylate) substrates with both concave micro channel and convex micro energy director for ultrasonic bonding is studied. The embossing processes with different embossing temperatures are simulated using Finite Element Method (FEM). The optimized parameters are: the embossing temperature of 135 ℃ , holding time of 200 s, and the embossing pressure of 1.65 MPa. The experimental results show that the replication error between experiments and simulations is less than 2% and the replication accuracy of the microstrueture is more than 96%. The study offers a method for quick optimizing parameters for hot embossing both concave and convex microstructures.展开更多
Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbita...Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbital bonding energy is applicable for judging whether a molecular orbital is bonding, nonbonding or antibonding besides Mulliken overlap criterion.展开更多
On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in...On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in the calculation of valence-band offsets.展开更多
文摘Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+)stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+)species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+)species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+)species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+)species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+)species corresponding to GaHHW.
文摘With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM).
基金Project(50831006)supported by the National Natural Science Foundation of ChinaProject(2012BAB10B05)supported by the National Key Technologies R&D Program of China
文摘The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms.
文摘On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB-H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.04-1.84 k J/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.
基金Project supported by the National Natural Science Foundation of China and China Academy of Engineering Physics (Grant Nos 10376021, 10274055).
文摘By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2, C2H3NO2, C2H5NO2, HONO2, CH3ONO2, C2H5ONO2, NH2NO2 (CH3)2NNO2 are computed. By comparing the computed BDEs and experimental results, it is found that the B3LYP method is unable to predict satisfactorily the results of bond dissociation energy (BDE); however, all four CBS models are generally able to give reliable predication of the X(C, N, O)-NO2 BDEs for these nitro compounds. Moreover, the CBS-4M calculation is the least computationally demanding among the four CBS methods considered, Therefore, we recommend CBS-4M method as a reliable method of computing the BDEs for this nitro compound system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11047176)the Research Foundation of Education Bureau of Hubei Province,China (Grant Nos. Q20111305,B20101303,T201204,B20111304,and Q20091215)
文摘Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density functional theory(DFT)(B3LYP,B3PW91,B3P86,PBE1PBE) and the complete basis set(CBS-Q) method in conjunction with the 6311G^** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work.Comparisons between the computational results and the experimental values reveal that CBS-Q method,which can produce reasonable BDEs for some systems in our previous work,seems unable to predict accurate BDEs here.However,the B3P86 calculated results accord very well with the experimental values,within an average absolute error of 2.3 kcal/mol.Thus,B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds.In addition,the energy gaps between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of studied compounds are estimated,based on which the relative thermal stabilities of the studied acids are also discussed.
基金The project was supported by the National Natural Science Foundation of China (No. 10574096 and 10676025)
文摘Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31g^** and 6-311g^** basis sets. The computed BDEs have been compared with the available experimental results. It is found that the B3P86 method with 6-31g^** and 6-311g^** basis sets can obtain satisfactory bond dissociation energies (BDEs), which are in extraordinary agreement with the experimental data. Considering the smaller mean absolute deviation and maximum difference, the reliable B3P86/6-311g^** method was recommended to compute the BDEs for the removal of nitrogen dioxide group in the nitroalkane energetic materials. Using the method, the BDEs of 8 other nitroalkane energetic materials have been calculated and the maximum difference from experimental value is 1.76 kcal.mo1^-1 (for the BDE of tC4Hg-NOz), which further proves the reliability of B3P86/6-311g^** method. In addition, it is noted that the BDEs of C-NO2 bond change slightly for main chain nitroalkane compounds with the maximum difference of only 3.43 kcal mo1^-1.
基金The project was supported by the National Natural Science Foundation of China (No. 10774039)
文摘The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.
文摘A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .
基金supported by the National Natural Science Foundation of China (No. 10674099)
文摘Neutral aluminium alkyls are well known to act as ethylene oligomerization and polymerization catalysts and cocatalysts.On the basis of the full optimization of alkylaluminium compounds with Gaussian 98 program package at the B3LYP/6-31G** level,the selected structures and bonding energies were investigated extensively.The geometries and bonding energies of AlR3(R = H,CH3,C2H5,C3H7,C4H9) and Al(C2H5)2R'(R' = C2H5,C3H7,C4H9,C5H11,C6H13) were investigated extensively,and we found that,along with the prolongation of carbon chains the terminal C-C bond is shortened gradually until to a constant value of about 0.1532 nm in C4H9;and the bonding energy almost remains constant.The dative bonding of C2H4 to Al(C2H5)3,whose bonding energy is only 15.30 kJ/mol,is very weak.
基金Supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (200525)the Science and Tech-nology Program of Wuhan City (20067003111-07)
文摘Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full compactly folded. To investigate the designability of the dented structures, we introduce the hydrogen bond energy in the secondary structures by using the secondary-structure-favored HP model proposed by Ou-yang etc. The result shows that the average designability increases with the strength of the hydrogen bond. The designabilities of the structures with same dented shape increase exponentially with the number of secondary structure sites. The dented structures can have the highest designabilities for a certain value of hydrogen bond energy density.
基金Project supported by the National Natural Science Foundation of China (20471012), Foundation for the Author of National Excellent Doctoral Dissertation of China (200322), the Research Fund for the Doctoral Program of Higher Education (20040141004) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘On the basis of crystallographic structure of lithium niobate (LN), the bonding energy was quantitatively calculated by the bond valence sum model, which was employed to investigate the crystal growth. A possible relationship between the crystal growth habit and chemical bonding energy of LN crystals are found. It is found that the higher the bond energy, the slower the growth rate, and the more important the plane. The analytical results indicate that (012) plane is the most influential face for the LN crystal growth, which consists well with the standard card (JCPDS Card: 20-0631) and our previous experimental observation. The current work shows that the chemical bond analysis of LN crystals allows us to predict its growth habit and thus to obtain the expected morphology during the spontaneous growth.
基金Supported by the National Natural Science Foundation of China (No. 20173027 and No. 29873023)
文摘The pair correlation energy of bonding electrons is used and analyzed in the cal- culation of CH and CY (Y = F, O, N) bonding electron pairs in CH3X (X = F, OH, NH2) isoelec- tronic systems based on intra- and interpair correlation energy results at both MP2-OPT2/6- 311++G(d) and MP2-OPT2/cc-pVtz levels with MELD program. Comparison of two set results shows that cc-pVtz and 6-311++G(d) give more correlation energy of valence electrons and innermost core electron pairs, respectively in these systems, resulting that the total correlation energy with cc-pVtz basis of each system is larger than that with 6-311++G(d). Investigations of pair correlation energy show that with the decrease of electronegativity of X atom and the increase of H atoms in these CH3X (X = F, OH, NH2) systems, the pair correlation energy of 1sC2 of the C atoms is transferable, and the correlation energy of CH bonding electron pair with little changes is of approximate transferability, while those of CY (CF, CO, CN) bonding electron pair decrease in a large extent from CH3F through CH3OH to CH3NH2 molecules. It is suggested that the study of pair correlation energy of bonding electrons will further deepen the understanding of electron corre- lation effect from traditional chemical bonding concept.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50975037)the State Key Development Program for Basic Research of China(Grant No.2011CB013105).
文摘In order to use micro ultrasonic bonding technique to package polymer microfluidic chips, an auxiliary microstructure named micro energy director is designed and fabricated. The hot embossing process for PMMA ( polymethyl methacrylate) substrates with both concave micro channel and convex micro energy director for ultrasonic bonding is studied. The embossing processes with different embossing temperatures are simulated using Finite Element Method (FEM). The optimized parameters are: the embossing temperature of 135 ℃ , holding time of 200 s, and the embossing pressure of 1.65 MPa. The experimental results show that the replication error between experiments and simulations is less than 2% and the replication accuracy of the microstrueture is more than 96%. The study offers a method for quick optimizing parameters for hot embossing both concave and convex microstructures.
文摘Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbital bonding energy is applicable for judging whether a molecular orbital is bonding, nonbonding or antibonding besides Mulliken overlap criterion.
文摘On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in the calculation of valence-band offsets.