期刊文献+
共找到15,269篇文章
< 1 2 250 >
每页显示 20 50 100
Constraints on Characteristics and Distribution of Gas Hydrate and Free Gas Using Broad-Band Processing of Three-Dimensional Seismic Data 被引量:2
1
作者 WANG Xiujuan ZHOU Jilin +7 位作者 LI Sanzhong LI Lixia LI Jie LI Yuanping WANG Linfei SU Pibo JIN Jiapeng GONG Zhi 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1233-1247,共15页
Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have ... Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin. 展开更多
关键词 gas hydrate free gas shift of BSR broad-band processing
下载PDF
Mechanical Modeling and Analysis of Stability Deterioration of Production Well During Marine Hydrate Depressurization Production 被引量:1
2
作者 SUN Huan-zhao CHANG Yuan-jiang +4 位作者 SUN Bao-jiang WANG Kang CHEN Guo-ming LI Hao DAI Yong-guo 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期338-351,共14页
Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence d... Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well. 展开更多
关键词 natural gas hydrate production well depressurization production formation deformation stability deterioration
下载PDF
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea 被引量:2
3
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 Venting gas hydrates Deep-large faults Gas chimney Gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan Basin South China Sea
下载PDF
TBAB hydrate formation and growth in a microdevice under static and dynamic conditions
4
作者 Xingxun Li Ming Liu +3 位作者 Qingping Li Weixin Pang Guangjin Chen Changyu Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1396-1404,共9页
The natural gas hydrate has become one of the most promising future green energy sources on the earth.The natural gas hydrates mostly exist in the sediments with porous structure, so a solid understanding of the hydra... The natural gas hydrate has become one of the most promising future green energy sources on the earth.The natural gas hydrates mostly exist in the sediments with porous structure, so a solid understanding of the hydrate formation and growth processes in the porous medium is of significance for the exploitation of natural gas hydrate. The micro-packed bed device is one of the efficient microfluidic devices in the engineering field, but it has been rarely used for the hydrate-based research. In this study, a transparent micro-packed bed device filled with glass beads was developed to mimic the porous condition of sediments, and used to in-situ visualize the hydrate formation and growth habits in the pore spaces under both static and dynamic conditions. For the static experiment, two types of hydrate growth patterns in porous medium were observed and identified in the micro-packed bed device, which were the graincoating growth and pore-filling growth. For the dynamic condition, the hydrate formation, growth,distribution habits and hydrate blockage phenomena in the pore spaces were in-situ visually captured.The impacts of flowrate and subcooling on the pressure variation of the micro-packed bed and the duration of the hydrate growth under dynamic flow condition in pores were in-situ monitored and analyzed. The higher flowrate could result in the faster hydrate growth and more severe blockage in pores, but the effect of subcooling condition might be less significant at the high flowrate. 展开更多
关键词 hydrate formation hydrate growth MICRODEVICE In-situ measurement
下载PDF
Rheological study of methane gas hydrates in the presence of micron-sized sand particles
5
作者 Bohui Shi Shangfei Song +6 位作者 Yuchuan Chen Shunkang Fu Lihao Liu Xinyao Yang Haihao Wu Guangjin Chen Jing Gong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期149-161,共13页
Natural gas hydrates,intricate crystalline structures formed by water molecules and small gas molecules,have emerged as a significant and globally impactful clean energy resource.However,their commercial exploitation ... Natural gas hydrates,intricate crystalline structures formed by water molecules and small gas molecules,have emerged as a significant and globally impactful clean energy resource.However,their commercial exploitation faces challenges,particularly operational disruptions caused by sand-related blockages.Understanding the rheological properties of hydrate slurry,especially in the presence of micron-sized sand particles,is imperative for ensuring the flow assurance of subsea hydrate exploitation.This study extensively investigates the rheological properties of sand-containing hydrate slurries.The findings reveal that these slurries exhibit non-Newtonian fluid characteristics,including yield stress,thixotropy,and shear-thinning behavior.Solid-like elastic features are observed in sand-containing hydrate slurries before yielding,transitioning to viscous behavior after yielding.Even with a minimal amount of sand,both static yield stress and yield strain experience substantial changes,correlating with the increase in sand concentration.The research conclusively establishes the thixotropic nature of sand-hydrate slurries,where the viscosity decay rate is directly influenced by the shear rate.These insights aim to contribute comprehensively to the development of effective flow assurance strategies,ensuring the safe and stable operation of subsea hydrate exploitation. 展开更多
关键词 Natural gas hydrate production Sand-containing hydrate slurries Yield stress THIXOTROPY Shear-thinning behavior
下载PDF
Saturation Estimation with Complex Electrical Conductivity for Hydrate-Bearing Clayey Sediments:An Experimental Study
6
作者 XING Lanchang ZHANG Shuli +8 位作者 ZHANG Huanhuan WU Chenyutong WANG Bin LAO Liyun WEI Wei HAN Weifeng WEI Zhoutuo GE Xinmin DENG Shaogui 《Journal of Ocean University of China》 CAS CSCD 2024年第1期173-189,共17页
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S... Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively. 展开更多
关键词 gas hydrate complex electrical conductivity hydrate-bearing clayey sediment hydrate saturation Simandoux equation frequency dispersion Cole-Cole formula
下载PDF
Adhesion strength of tetrahydrofuran hydrates is dictated by substrate stiffness
7
作者 Yan-Wen Lin Tong Li +4 位作者 Yi Zhang Wei-Wei Yan Xiao-Ming Chen Zhi-Sen Zhang Jian-Yang Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期667-673,共7页
Understanding the hydrate adhesion is important to tackling hydrate accretion in petro-pipelines.Herein,the relationship between the Tetrahydrofuran(THF)hydrate adhesion strength(AS)and surface stiffness on elastic co... Understanding the hydrate adhesion is important to tackling hydrate accretion in petro-pipelines.Herein,the relationship between the Tetrahydrofuran(THF)hydrate adhesion strength(AS)and surface stiffness on elastic coatings is systemically examined by experimental shear force measurements and theoretical methods.The mechanical factor-elastic modulus of the coatings greatly dictates the hydrate AS,which is explained by the adhesion mechanics theory,beyond the usual factors such as wettability and structural roughness.Moreover,the hydrate AS increases with reducing the thickness of the elastic coatings,resulted from the decrease of the apparent surface elastic modulus.The effect of critical thickness for the elastic materials with variable elastic modulus on the hydrate AS is also revealed.This study provides deep perspectives on the regulation of the hydrate AS by the elastic modulus of elastic materials,which is of significance to design anti-hydrate surfaces for mitigation of hydrate accretion in petro-pipelines. 展开更多
关键词 hydrate Adhesion strength Elastic modulus COATINGS
下载PDF
Rate-limiting factors in hydrate decomposition through depressurization across various scales:A mini-review
8
作者 Xian Sun Peng Xiao +7 位作者 Qinfeng Shi Lingban Wang Zhenbin Xu Yuhao Bu Xiaohui Wang Yifei Sun Changyu Sun Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期206-219,共14页
Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the chall... Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the challenges of long-term preparation,high costs and associated risks.Experimental studies,on the other hand,offer a safe and cost-effective means of exploring the mechanisms of hydrate dissociation and optimizing exploitation conditions.Gas hydrate decomposition is a complicated process along with intrinsic kinetics,mass transfer and heat transfer,which are the influencing factors for hydrate decomposition rate.The identification of the rate-limiting factor for hydrate dissociation during depressurization varies with the scale of the reservoir,making it challenging to extrapolate findings from laboratory experiments to the actual exploitation.This review aims to summarize current knowledge of investigations on hydrate decomposition on the subject of the research scale(core scale,middle scale,large scale and field tests)and to analyze determining factors for decomposition rate,considering the various research scales and their associated influencing factors. 展开更多
关键词 Gas hydrate Rate-limiting factors Research scale DEPRESSURIZATION DECOMPOSITION
下载PDF
Effect of inorganic salt impurities on seeded precipitation of silica hydrate from sodium silicate solution
9
作者 Xiao-bin LI Xiao-bing GAO +5 位作者 Qiu-sheng ZHOU Yi-lin WANG Tian-gui QI Lei-ting SHEN Gui-hua LIU Zhi-hong PENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期3016-3028,共13页
To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using s... To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate. 展开更多
关键词 ALUMINOSILICATE sodium silicate solution siloxy group IMPURITY silica hydrate
下载PDF
New insights into the deposition of natural gas hydrate on pipeline surfaces:A molecular dynamics simulation study
10
作者 Jun Zhang Hai-Qiang Fu +7 位作者 Mu-Zhi Guo Zhao Wang Li-Wen Li Qi Yin You-Guo Yan Wei Wei Wei-Feng Han Jie Zhong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期694-704,共11页
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N... Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces. 展开更多
关键词 DEPOSITION Natural gas hydrate Pipelines Water affinity Adhesion strength
下载PDF
Molecular simulation study on the evolution process of hydrate residual structures into hydrate
11
作者 Liwei Cheng Yunfei Li +4 位作者 Jinlong Cui Huibo Qin Fulong Ning Bei Liu Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期79-91,共13页
The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation o... The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation of clathrate hydrate.However,the underlying mechanism of this effect remains unclear.To gain a better understanding of the mechanism,we conducted molecular dynamic simulations to simulate the initial formation and reformation processes of methane hydrate.In this work,we showed the evolution process of hydrate residual structures into hydrate cages.The simulation results indicate that the residual structures are closely related to the existence of hydrate memory effect,and the higher the contribution of hydrate dissociated water to the hydrate nucleation process,the faster the hydrate nucleation.After hydrate dissociation,the locally ordered structures still exist after hydrate dissociation and can promote the formation of cluster structures,thus accelerating hydrate nucleation.Additionally,the nucleation process of hydrate and the formation process of clusters are inseparable.The size of clusters composed of cup-cage structures is critical for hydrate nucleation.The residence time at high temperature after hydrate decomposition will affect the strength of the hydrate memory effect.Our simulation results provide microscopic insights into the occurrence of the hydrate memory effect and shed light on the hydrate reformation process at the molecular scale. 展开更多
关键词 Memory effect Molecular simulation hydrate reformation Residual structures
下载PDF
Gas hydrate saturation from NGHP 02 LWD data in the Mahanadi Basin
12
作者 Uma Shankar Pradeep Kumar Yadav +1 位作者 Sneha Devi Udham Singh Yadav 《Energy Geoscience》 EI 2024年第2期279-289,共11页
During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock p... During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system. 展开更多
关键词 Mahanadi Basin Gas hydrate Sonic log Effective medium modeling Electrical resistivity log Archie’s analysis Gas hydrate saturation
下载PDF
Experimental Study on Consolidation Properties of Hydrate-Bearing Fine-Grained Sediments Collected from the Shenhu Area of the Northern South China Sea
13
作者 WEI Ruchun LIU Lele +5 位作者 JIA Chao DONG Xiao BU Qingtao ZHANG Yongchao LIU Changling WU Nengyou 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期981-990,共10页
Mechanical properties of hydrate-bearing fine-grained sediments are crucial to effectively mitigate environmental risks caused by artificial and natural decomposition of natural gas hydrates,and the decomposition can ... Mechanical properties of hydrate-bearing fine-grained sediments are crucial to effectively mitigate environmental risks caused by artificial and natural decomposition of natural gas hydrates,and the decomposition can induce laterally confined deformation.To explore the effect of natural gas hydrates on laterally confined compression properties,consolidation tests are conducted on remolded hydrate-free and hydrate-bearing samples by using natural fine-grained sediments collected from the northern South China Sea as the host sediments,and empirical equations are developed based on the analyses of consolidation characteristics.The results show that vertical loading induces a reduction in void ratio,and the reduction increases with decreasing hydrate saturation when samples are subjected to the same vertical stress change.The compression index of samples is about 0.53 whether there is hydrate or not,but the yield stress of samples increases sharply with increasing hydrate saturation once beyond the critical value.The coefficient of volume compression and the coefficient of consolidation of hydrate-bearing samples both increase firstly and then decrease to a relative stable level with increasing vertical stress,and the transition occurs at 200 kPa.The average consolidation degree with elapsed time increases rapidly under low vertical stresses,slowly under median vertical stresses,and under high vertical stresses,the consolidation increases a little faster but still slower than those under low vertical stresses. 展开更多
关键词 natural gas hydrate STIFFNESS compression index hydraulic permeability GEOHAZARD
下载PDF
Numerical Simulation on Production Trials by Using Depressurization for Typical Marine Hydrate Reservoirs:Well Type and Formation Dip
14
作者 QIN Fanfan SUN Jiaxin +4 位作者 GU Yuhang CAO Xinxin MAO Peixiao NING Fulong JIANG Guosheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期661-675,共15页
Natural gas hydrate has huge reserves and is widely distributed in marine environment.Its commercial development is of great significance for alleviating the contradiction between energy supply and demand.As an effici... Natural gas hydrate has huge reserves and is widely distributed in marine environment.Its commercial development is of great significance for alleviating the contradiction between energy supply and demand.As an efficient research method,numerical simulation can provide valuable insights for the design and optimization of hydrate development.However,most of the current production models simplify the reservoir as a two-dimensional(2D)horizontal layered model,often ignoring the impact of formation dip angle.To improve the accuracy of production prediction and provide theoretical support for the optimization of production well design,two three-dimensional(3D)geological models with different dip angles based on the geological data from two typical sites are constructed.The vertical well,horizontal well and multilateral wells are deployed in these reservoirs with different permeabilities to perform production trial,and the sensitivity analysis of dip angles is also carried out.The short-term production behaviors in high and low permeability reservoirs with different dip angles are exhibited.The simulation results show that 1)the gas and water production behaviors for different well types in the two typical reservoirs show obviously different variation laws when the short-term depressurization is conducted in the inclined formation;2)the inclined formation will reduce the gas production and increase the water extraction,and the phenomena becomes pronounced as the dip angle increases,particularly in the low-permeability reservoirs;3)and the impact of formation dip on hydrate recovery does not change significantly with the variation of well type. 展开更多
关键词 natural gas hydrate inclined formation DEPRESSURIZATION production well type
下载PDF
Deformation Characteristics of Hydrate-Bearing Sediments
15
作者 DONG Lin LI Yanlong +4 位作者 ZHANG Yajuan HU Gaowei LIAO Hualin CHEN Qiang WU Nengyou 《Journal of Ocean University of China》 CAS CSCD 2024年第1期149-156,共8页
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d... The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development. 展开更多
关键词 gas hydrate deformation characteristics volumetric strain lateral strain prediction model
下载PDF
Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas
16
作者 Hongzhi Xu Jian Wang +3 位作者 Shuxia Li Fengrui Zhao Chengwen Wang Yang Guo 《Fluid Dynamics & Materials Processing》 EI 2024年第3期505-523,共19页
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti... Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio. 展开更多
关键词 Natural gas hydrate conventional gas coexistence accumulation DEPRESSURIZATION combined production
下载PDF
Effect of Skeleton Grain Size on the Saturation of Gas Hydrate in Natural Sediments
17
作者 XU Zhenqiang LI Yang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期676-682,共7页
Natural gas hydrate is prospected as a new and promising,highly clean energy resource that mainly occurs in perma-frost or at continental margins.Its formation is subject to many soil conditions,such as grain size,mat... Natural gas hydrate is prospected as a new and promising,highly clean energy resource that mainly occurs in perma-frost or at continental margins.Its formation is subject to many soil conditions,such as grain size,matrix materials,pore morphology,and permeability.In this study,we propose that grain size is the most decisive parameter that affects the saturation of gas hydrate in sediments based on data from Ocean Drilling Program Leg 164 and Mallik 5L-38,which represent marine sediments and terrestrial sediments,respectively.Our study reveals that high gas hydrate saturation generally occurs in coarse-grained sand,regardless of whether sediment formation is homogeneous or inhomogeneous,and the sorting of sediments may affect the hydrate saturation to a certain degree.Using grain size and sorting of sediments may be the most intuitive proxy method for a rough estimation of hydrate saturation.Further study is necessary to fully understand the relationship between hydrate morphology and sediment grain size,even though massive hydrates are typically found in fine clayey-rich sediments. 展开更多
关键词 grain size SATURATION gas hydrates ODP Leg 164 Mallik 5L-38
下载PDF
Optimization of Gas Production from Hydrate-Bearing Sediments with Fluctuation Characteristics
18
作者 LI Yaobin XU Tianfu +3 位作者 XIN Xin YU Han YUAN Yilong ZHU Huixing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期618-632,共15页
As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is impor... As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%. 展开更多
关键词 natural gas hydrate numerical simulation fluctuation characteristics depressurization production production well optimization
下载PDF
Formation Characteristics of CO_(2) Hydrates in the Presence of Porous Media and NaCl
19
作者 Han Jianchao Zhu Shuai Gui Xia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期168-177,共10页
Hydrate-based CO_(2) sequestration is an effective method for reducing the greenhouse effect,and the presence of porous media and NaCl can impact the formation characteristics of hydrates.This study uses the constant ... Hydrate-based CO_(2) sequestration is an effective method for reducing the greenhouse effect,and the presence of porous media and NaCl can impact the formation characteristics of hydrates.This study uses the constant volume temperature search method to investigate the effects of quartz sand particle size(0.006‒0.03 mm),water saturation(30%–90%),and NaCl concentration(1%‒9%)on the phase equilibrium and kinetics of CO_(2) hydrates within a temperature range of 273‒285 K and pressure range of 1.0‒3.5 MPa.The results indicate that a decrease in quartz sand particle size or an increase in NaCl concentration shifts the hydrate phase equilibrium curve towards lower temperatures and higher pressures,making hydrate generation conditions more demanding.In different particle size systems,there are no significant changes in the rate of CO_(2) hydrate formation or conversion rate.The highest hydrate conversion rate of 71.1%is observed in a 0.015 mm particle size system.With increasing water saturation,both the generation rate and conversion rate of CO_(2) hydrates show a trend of first increasing and then decreasing.Meanwhile,low concentrations of NaCl(1%–3%)are found to enhance the formation and conversion rates of CO_(2) hydrates.However,as NaCl concentration increases,the rate of CO_(2) hydrate formation and conversion rate decrease. 展开更多
关键词 CO_(2)hydrate porous medium NACL formation characteristics
下载PDF
Self-adaptive gas flow and phase change behaviors during hydrate exploitation by alternate injection of N_(2) and CO_(2)
20
作者 Bo-Jian Cao Yi-Fei Sun +5 位作者 Hong-Nan Chen Jin-Rong Zhong Ming-Long Wang Ming Wang Chang-Yu Sun Guang-Jin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2120-2129,共10页
Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed ... Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed methods,the spontaneous displacement of CH_(4) from hydrate cages by CO_(2) seems to be a perfect mechanism to address gas production and CO_(2) storage,especially in today's strong demand for carbon reduction and replacing clean energy.After extensive lab researches,in the past decade,injecting a mixture of CO_(2) and small molecule gas has become a key means to enhance displacement efficiency and has great potential for application.However,there is a lack of in-depth research on gas flow in the reservoir,while the injected gas always passes through low-saturated hydrate areas with high permeability and then occurs gas channel in a short term,finally resulting in the decreases in gas production efficiency and produced gas quality.Therefore,we explored a new injection-production mode of alternate injection of N2 and CO_(2) in order to fully coordinate the advantages of N_(2) in enhanced hydrate decomposition and CO_(2) in solid storage and heat compensation.These alternate"taking"and"storing"processes perfectly repair the problem of the gas channel,achieving self-regulation effect of CH_(4) recovery and CO_(2) storage.The 3-D experimental results show that compared to the mixed gas injection,CH_(4) recovery is increased by>50%and CO_(2) storage is increased by>70%.Additionally,this alternate injection mode presented a better performance in CH_(4) concentration of produced gas and showed outstanding N_(2) utilization efficiency.Further,we analyzed its self-adaptive gas flow mechanism and proposed an application model of"one injection and multiple production".We look forward to this study accelerating the application of CO_(2)-CH_(4) replacement technology. 展开更多
关键词 hydrate Replacement CH_(4)recovery CO_(2)storage Reservoir remediation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部