The well-distributed, stable selenium nanoparticles (10 nm) with good adhesive ability and biocompatibility were successfully synthesized by using the template of chitosan cross-linked with glutaradehyde. The resulti...The well-distributed, stable selenium nanoparticles (10 nm) with good adhesive ability and biocompatibility were successfully synthesized by using the template of chitosan cross-linked with glutaradehyde. The resulting selenium nanoparticles were used as a new carrier for horseradish peroxidase to construct H2O2 biosensors with good performances.展开更多
A simple and easily operated technique was developed to fabricate GaN films. GaN films possessing hexagonal wurtzite structure were fabricated on Si(111) substrates with ZnO buffer layers through nitriding Ga2O3 films...A simple and easily operated technique was developed to fabricate GaN films. GaN films possessing hexagonal wurtzite structure were fabricated on Si(111) substrates with ZnO buffer layers through nitriding Ga2O3 films in the tube quartz furnace. ZnO buffer layers and Ga3O3 films were deposited on Si substrates in turn by using radio frequency magnetron sputtering system before the nitriding process. The structure and composition of GaN films were studied by X-ray diffraction, selected area electron diffraction and Fourier transform infrared spectrophotometer. The morphologies of GaN films were studied by scanning electron microscopy. The results show that ZnO buffer layer improves the crystalline quality and the surface morphology of the films relative to the films grown directly on silicon substrates. The measurement result of room-temperature photoluminescence spectrum indicates that the photoluminescence peaks locate at 365 nm and 422 nm.展开更多
优化氮肥施用和秸秆还田技术为途径的农业管理措施被认为是提升农业可持续性的有效手段,然而当前关于氮肥和秸秆还田对小麦产量和N_(2)O排放影响的研究仍十分有限。为此,本研究基于2000—2022年发表的关于长江中下游流域氮肥和秸秆投入...优化氮肥施用和秸秆还田技术为途径的农业管理措施被认为是提升农业可持续性的有效手段,然而当前关于氮肥和秸秆还田对小麦产量和N_(2)O排放影响的研究仍十分有限。为此,本研究基于2000—2022年发表的关于长江中下游流域氮肥和秸秆投入下小麦产量和N_(2)O排放变化的文献,运用随机森林建模,定量分析氮肥和秸秆还田对小麦产量和N_(2)O排放的影响,并结合情景设置进行了特定地点的小麦产量和N_(2)O排放模拟,同时评估了碳排放强度(CEE)和净生态系统经济效益(NEEB)。结果表明,建立的区域尺度小麦产量与N_(2)O排放对氮秸互作响应的随机森林模型,验证结果R^(2)分别为0.66和0.65,RMSE分别为0.70和1.11。结果表明施氮量和土壤有机质是影响小麦产量和N_(2)O排放的重要因素。综合来看,达到最大产量所需的氮肥量为208~212 kg hm^(-2),达到最小CEE所需的氮肥量为113~130 kg hm^(-2),达到最高的NEEB所需的氮肥量为202~205 kg hm^(-2),其中在6.75 t hm^(-2)的秸秆投入下施用202 kg hm^(-2)的氮肥可以获得最高的生态收益1.37万元。优化氮肥和秸秆投入具备减少作物碳排放强度并获得最大净生态环境效益的潜力。展开更多
文摘The well-distributed, stable selenium nanoparticles (10 nm) with good adhesive ability and biocompatibility were successfully synthesized by using the template of chitosan cross-linked with glutaradehyde. The resulting selenium nanoparticles were used as a new carrier for horseradish peroxidase to construct H2O2 biosensors with good performances.
基金Projects(90301002 90201025) supported by the National Natural Science Foundation of China
文摘A simple and easily operated technique was developed to fabricate GaN films. GaN films possessing hexagonal wurtzite structure were fabricated on Si(111) substrates with ZnO buffer layers through nitriding Ga2O3 films in the tube quartz furnace. ZnO buffer layers and Ga3O3 films were deposited on Si substrates in turn by using radio frequency magnetron sputtering system before the nitriding process. The structure and composition of GaN films were studied by X-ray diffraction, selected area electron diffraction and Fourier transform infrared spectrophotometer. The morphologies of GaN films were studied by scanning electron microscopy. The results show that ZnO buffer layer improves the crystalline quality and the surface morphology of the films relative to the films grown directly on silicon substrates. The measurement result of room-temperature photoluminescence spectrum indicates that the photoluminescence peaks locate at 365 nm and 422 nm.
文摘优化氮肥施用和秸秆还田技术为途径的农业管理措施被认为是提升农业可持续性的有效手段,然而当前关于氮肥和秸秆还田对小麦产量和N_(2)O排放影响的研究仍十分有限。为此,本研究基于2000—2022年发表的关于长江中下游流域氮肥和秸秆投入下小麦产量和N_(2)O排放变化的文献,运用随机森林建模,定量分析氮肥和秸秆还田对小麦产量和N_(2)O排放的影响,并结合情景设置进行了特定地点的小麦产量和N_(2)O排放模拟,同时评估了碳排放强度(CEE)和净生态系统经济效益(NEEB)。结果表明,建立的区域尺度小麦产量与N_(2)O排放对氮秸互作响应的随机森林模型,验证结果R^(2)分别为0.66和0.65,RMSE分别为0.70和1.11。结果表明施氮量和土壤有机质是影响小麦产量和N_(2)O排放的重要因素。综合来看,达到最大产量所需的氮肥量为208~212 kg hm^(-2),达到最小CEE所需的氮肥量为113~130 kg hm^(-2),达到最高的NEEB所需的氮肥量为202~205 kg hm^(-2),其中在6.75 t hm^(-2)的秸秆投入下施用202 kg hm^(-2)的氮肥可以获得最高的生态收益1.37万元。优化氮肥和秸秆投入具备减少作物碳排放强度并获得最大净生态环境效益的潜力。